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Abstract

For a family H of graphs, a graph G is said to be H-free if G contains no member of H as a in-
duced subgraph. Let Q~4(’H) denote the family of connected H-free graphs having minimum degree
at least 4. In this paper, we characterize the families 7 of connected graphs with |#| = 3 such
that 7 contains a star and G, () is a finite family, except for the case where { K4, K, ,,} € H with
3<n<A4.
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1. Introduction

In this paper, we consider only finite undirected simple graphs. Let G be a graph. Let V' (G) and
E(Q) denote the vertex set and the edge set of G, respectively. For a vertex u € V' (G), let Ng(u)
and dg(u) denote the neighborhood and the degree of u, respectively; thus Ng(u) = {v € V(G) |
wv € E(G)} and dg(u) = |Ng(u)|. We let 6(G) and A(G) denote the minimum degree and the
maximum degree of G, respectively. For a subset U of V(G), let Ng(U) = U,y Na(u), and let
G[U] denote the subgraph of GG induced by U. For two subset U, U’ of V(G) with U N U" = (),
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EWUU) :={zy € E(G) | z € U,y € U'}. For u,v € V(G), let dists(u,v) denote the length
of a shortest u-v path of GG. Let diam(G) denote the maximum of distg(u,v) among all pairs
u,v € V(G). For two positive integers s; and sy, the Ramsey number R(sq, $2) is the minimum
positive integer R such that any graph of order at least R contains a clique of order s; or an
independent set of cardinality s;. For terms and symbols not defined in this paper, we refer the
reader to [2].

For two graphs G and H, we write H < G if GG contains an induced copy of H, and G is said
to be H-free if H 4 (G. For a family H of graphs, a graph G is said to be H- free if G is H-free
for every H € H. In this context, the members of H are called forbidden subgraphs of G. For
an integer £ > 1 and a family # of graphs, we let Gy, (resp. Qk) denote the set of all k-connected
graphs (resp. connected graphs with minimum degree at least k), and let G, (H) (resp. gk(H))
denote the set of all #{-free graphs belonging to Gy(resp. Gy), that is,

Gr(H) := {G| G isak-connected H-free graph}
Gw(H1) := {G |G is aconnected H-free graph with minimum degree at least k}

The main aim of this paper is to characterize the families H of connected graphs satisfying the
condition that 3
|H| = 3 and G4(H) is a finite family, (1.1)

in the case where H contains a star. If a complete graph of order at most 2 belongs to H, then
Q~4(”H) is clearly empty. Thus, in the rest of this paper, we consider the case where every graph
belongs to ‘H has order at least 3.
Our motivation derives from characterization of families H of connected graphs satisfying the
condition that
Gr(H) is a finite family. (1.2)

If a family H satisfies (1.2), then for any property P on graphs, although the proposition that
all k-connected H-free graphs satisfy P with finite exceptions (1.3)

holds, the proposition gives no information about P. Thus, it is important to identify families H
satisfying (1.2) in advance. Having such a motivation, Fujisawa, Plummer and Saito [8] started a
study of families H satisfying (1.2), and determined the families H satisfying (1.2) for the case
where 1 < k <6 and |H| < 2, and (k,|H|) = (2, 3). In[1, 3, 4, 7], the research was continued by
analyzing families # satisfying (1.2) for the case where (k, |H|) = (3, 3), (4, 3). In view of the fact
that connectivity conditions can often be replaced by minimum degree condition in propositions
like (1.3), it is natural to consider connected graphs with minimum degree at least k& in place of
k-connected graphs. Thus, we consider the characterization of families H of connected graphs
satisfying the condition that

Gr(H) is a finite family. (1.4)

In fact, Y. Egawa and M. Furuya [5, 6] characterized the families H of connected graphs satisfying
condition (1.4) with (k, |#H|) = (3, 3) except for a special case. Therefore, we consider the charac-
terization of families H of connected graphs satisfying condition (1.4) with (k, |H|) = (4, 3), that
is, characterization of the families H of connected graphs satisfying condition (1.1).
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Figure 1. Graphs Y3,Ys", Z4 and Z}

Before describing several results, we define some graphs. Let n be an integer with n > 2. Let
P = xyx5...2,, be the path of order n, and let y;, ¥, 21 and 29 be four distinct vertices different
from x4, ..., z,. LetY,,, Y ", Z, and Z denote the graphs defined by

V(Yo) =V(Z,) =V(P)U{y,u}, V(Y,)) =VI(Z,) = V(P)U{y,y2 21, 22},
E(Y,) = E(P)U{ziy, 1192}, E(Y,)) = E(P) U{z1y1, T1Y2, Tn21, Tn2a},
E(Z,) = E(Y,) U{yy}, and E(Z)) = E(Y,") U {y1y2, 2122} .(see Figure 1)

Let Ay, Ay, A3 and A4 be the graphs depicted in Figure 2. We call vertices x and y in Figure 2
the first vertex and the last vertex of A;(i = 1,2,3,4), respectively.

x y X y
A, A,
X y X y
A, Ay
Figure 2. Graphs A, As, A3 and Ay

For an integer s > 1, let 7, be the family of the graphs obtained from s pairwise vertex-disjoint
copies Ly, ..., Ls of Ay, Ay, A3 or A4 by the following construction:

- Let 29 and y be two vertices of L; where (Y and y*) respectively correspond to z, y ;
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Figure 3. Graph belonging to J

- For each integer ¢ with 2 < i < s, we identify 5~ with 2.

Let J = U Ji (see Figure 3). (Note that [J can be expressed as the family of the graphs
obtained by co;regining with some graphs of the form Z; witht > 1.)

Let GG be a connected graph. A vertex v of G is called a cutvertex if G — v is disconnected. If
G has a cutvertex, G is said to be separable; otherwise, it is said to be nonseparable. Note that
K is a nonseparable graph. A maximal nonseparable subgraph of G is called a block of G. When
G is separable, the block-cutvertex graph of G is defined to be the bipartite graph Z such that 7
has as its partite sets the set of all cutvertices of G and the set of all blocks of G and, for a cutvertex
v and a block B, v and B are adjacent in Z if and only if v is a vertex of B in G. It is a well-known
fact that the block-cutvertex graph of a connected graph is a tree.

Let K, Ky, m,, P, denote the complete graph of order [, the complete bipartite graph with
partite sets having cardinalities m; and ms, and the path of order n, respectively. A complete
bipartite graph of the form K ,, with m > 1is called a star. A caterpillar is a tree for which the
removal of all endvertices leaves a path. A cactus is a connected graph every block of which is a
complete graph of order two or a cycle.

We shall use the following sets in the discussion that will follow. Let 7, be the set of trees, are
none of K9, K 3 and K 4, having order greater than or equal to three and maximum degree at
most 4. Note that 7y dose not contain a star. Let 77 be the set of those caterpillars belongs to 7 in
which the vertices of degree 4 and the vertices of degree 3 or higher are not adjacent, and no three
vertices of degree 3 are contiguously adjacent. Let 7o = {P,Y,,,,Y," | | > 4,m > 3,n > 2}.

Let 7, be the set of those cacti 7" having order greater than or equal to four such that all cycle
of T are triangles. Let 7;" be the set of those members of 7, whose block-cutvertex graph is a
path. Let 7o' = {P, Z,,,, Z5, | l > 4,m > 2,n > 1}. We have 7, O T;* 2 T,".
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Our main result is as follows.

Theorem 1.1. Let [, n be integers with | > 3,n > 2, and let T be a connected graph of order at
least 3. If Gy({ Ky, K1, T}) is a finite family, then one of the following holds:

(1) n=2orT is a path;
(4) n>5,1=3, andT < Y for some integer t > 2 witht # 1 (mod 4);
(1i1) 3<n<4,1=4,andT < J for some graph J € J;
(iv) 3<n<4,1>5 andT < Z, for some integert > 2;
)

(v) (I,n) = (3,3),(3,4).

We think (7ii) of Theorem 1.1 is far from sufficient condition. Therefore, we consider the
converse of Theorem 1.1 except for (ii7). The result is the following.

Theorem 1.2. Let I, n be integers withl > 3,n > 2, (I,n) # (4,3), (4,4), and let T be a connected
graph of order at least 3. Then G4({ K, K1 ,, T'}) is a finite family if and only if one of the following
holds:

©

) n=2orT is apath;

(14) n>51=3, and T < Y} for some integer t > 2 witht # 1 (mod 4);
)
)

(1i1) 3<n<4,1>5andT < Z; for some integert > 2;

(I,n) = (3,3),(3,4).

We prove Theorem 1.1 in Section 3. We prove Theorem 1.2 in Section 4.

(iv

2. Preliminary resullts
The following result can be found in [2].

Lemma 2.1 (Diestel [2, Proposition 9.4.1]). Let [, n and t be integers with | > 3,n > 2 andt > 3.
Then G\({ K, K1, P}) is a finite family.

The following result can be found in [1].

Lemma 2.2 (Buelban et al.[1, Theorems 10-12]). Let [, n be integers with | > 3,n > 2, and let
T be a connected graph of order at least 3. If G4({K;, K1,,,T}) is a finite family, then one of the
following holds:

(a) 1 >4,n>5,T is a path;
b) 1=3,n>5T¢ T

TeTr [=4,

(¢) 1>4,3<n<4 and
TeTy, 1>5,
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Figure 4. Graph B

(d) n=2or(,n) = (3,3), (3,4).

In [3, Case 1 in Lemma 5.1], a proposition which asserts that we have diam(G) < 7 for a 3-
connected { K3, ;" }-free graph G was proved. In the proof of the proposition, the 3-connectedness
of G was used only to ensure that §(G) > 3. Thus we obtain the following lemma.

Lemma 2.3 (Egawa et al.[3, Case 1 in Lemma 5.1]). Let G be a connected { K3, Y5 }-free graph
with §(G) > 4. Then diam(G) < 7.

The following result can be found in [5].

Lemma 2.4 (Egawa and Furuya [5, Proposition 3.6]). Let t be an integer witht > 4 and t # 1

(mod 4), and let
1 =
P St t=4,
% +3, t>6.

Let G be a connected { K3, Y }-free graph with §(G) > 4. Then diam(G) < d.

3. Proof of Theorem 1.1

Let B be the graph depicted in Figure 4. For an integer s > 2, let H, 3(1)' be the obtained from s
pairwise vertex-disjoint copies By, Bo, ..., B, of B such that V(B;) = {ug-l), ’UJ(Z})L 11 <7<2,1<
h < 3} where ug.i) and vj(z})L respectively correspond to u; and v; ,, by adding edges ug)ugiH) where
indices 7 and ¢ + 1 are read modulo s.

Lemma 3.1. Let s be an integer with s > 2, and let 'T' be a graph such that T' < ao. If T € 7s,

then T' < Y for some integert > 2 witht # 1 (mod 4).

Proof. Firstassume that 7' ~ P, (I > 4). If[—2 # 1 (mod 4), then lettingt = [ —2, we gett # 1
(mod 4) and T ~ P,y < Y5 if I —2 =1 (mod 4), then lettingt =1 — 1, we gett # 1 (mod 4)
and T ~ P11 < Pio < Y,". Nextassume that T ~ Y,, (m > 3). If m — 1 # 1 (mod 4), then
lettingt =m—1,wegett 21 (mod 4)and T ~ Y, ;1 < Y;if m—1 =1 (mod 4), then letting
t=m,wegett# 1 (mod4)and T ~Y; < Y11 < Y,*. Therefore, we may assume 7" ~ Y’ for
n’ > 2. Then A(T") = 3. Now, we divide the proof into the following two cases:

6
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Case 1. u ) e V(T) and dr(u (i)) :3f0rsome1 <i<sand1<j <2
Without loss of generality, we may assume u2 € V(T) and dr(ul) = 3. First, we assume
{112 1,2122,2123} C V(T). Since T has no cycle, va g V(T)forany 1 <p < 3. ThenT =~ K 3,
which contradicts T ~ Y. Hence, we may assume {véﬁ,vég,ugl)} C V(T). Since T has no
cycle, we have vi‘?) ¢ V(T)forany 1 < p < 3. Let i be the maximum integer such that 1 <i; < s
and ugil) € V(T). Since T has no cycle, |V (T) N {v](q,vj(g,vj(zg}] =1forany 1 <i<i —1
and 1 < j < 2. Therefore, we may assume {vj(? |1 <i<4—1,1 < j <2} CV(D). If
() ¢ V(T) thenT Y,s_o. Thus we may assume i, 7£ s. V(T )ﬂ{v2 1 vs 2),1)23 } =0, then
V( ) C {uj : J1 11<i<i—1,1<j<2bu{uf ,vzf,vég,ug ),vgzi),vyé),vg&,)}, which
implies that 7" < Y} _,. Thus we may assume V' (7) N {vﬁ), Vg s ) ol 3 VY £ (0, say v(” e V(T).
Since T has no cycle, we have |V (T) N {v f}), f;), 1%)}] =1, say v(“ € V(T). Since T has no
cycle and A(T) = 3, we have |V (T') N {vgg), Vy 3 ) u{™}| < 1. Then

V(T) € {ul?, 0 [1<i<in— 1,1 <5 < 25U {ud), ol o8, ™, o} o8y ofy)Y,
V(T)C{u U 1 | 1<i<ig—1, 1<L7<2}U{u2 ,vﬁ,v%,ug ),vﬁl) vél),vzg} or
V(T) C {ul 0l 11 <0 <ig, 1 <5 <2bu{uy), ol o5},

which implies that T < Y3 | or T" < Yy;,41(< Yj; ). Consequently, we obtain the desired

conclusion.
Case 1. dT( 7)< 2foranyl1 <i<sandl<j< 2w1thu € V( ).

We may assume vg | € V(T) and dT(v2 )) = 3. First, we assume {UM, v§72, vl‘g} C V(T). Since

T has no cycle, ug ), vy 2, v §Z V(T'). Then T' ~ K, 3, which contradicts the assumption that
T ~ Y* Hence we may assume {vf%, Uf%, WSV C V(T). Since T has no cycle, we have
ugs), 1122, 1223 ¢ V(T). Let iy be the minimum integer such that 1 < iy < s and u§i2) ¢ V(T).
If i, = 1, then T ~ K 1,3, Which contradicts the assumption that 7" ~ Y*,. Thus we may assume
that i > 2. Since T has no cycle, |V (T") N {v](?,v](g,vj(zg))}| = 1forany 1 < i < i, — 2 and
1 <j<2 Therefore wemayassume{vZ | 1< z' < ip — 2,1 < j <2} C V(). If
v< >m{v52 Dol = 0, V(1) = (o) |1 <i <21 <5 <2}bU
{vl iy > v;{, ués), uliz™ 1)} which implies that 7' ~ Yy;, 5(< Y4Z2 6)- Thus we assume V(7') N
o303, o3V # 0. Since dr(uf V) < 2, [V(T) 1 ol ,vﬁé Vooii VY = L say
vl € V(T). V(T )N {52V ufz el Y = 0, V(T) = {uj A 1<i<i—2,1<
Jj < Q}U{vfl, 1s%,véf,ués),u§” 1),U§Z§ Y}, which implies that T’ ~ Y422 4(= Y55, _5). Thus we
(i
2,

may assume V (T') N {v 2l el (Y o) say v;Q Y e V(T). Since T has no cycle and
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V1.1 Va1

Vip2 Voo

Figure 5. Graph C

A(T) = 3, we have [V/(T) N {of3™" 0§37 u§? "V} < 1. Then

V(T) € o, 31 111 < <ip—2,1 <5 < 23U {03,087, (S)vU?Q*”’vﬁi*”vvéfi*”,véféfl)}a
V(T) C {u v 1 \ 1<i<ip—2,1<j<2}uU {”1 17?}55%7@&5%,“%5),“%12 1)71)%—1)7”&7 5; )}

or

V(T) € {ul o) |1<i<ip — 1,1 <5 < 2} U {olf) o), o8], uf?}

)

which implies that T" < Vi, or T' < Yy, 2(< Yj;, _3). Consequently, we obtain the desired conclusion.
O

Let C' be the graph depicted in Figure 5. For an integer s > 2, let H; @ be the graph obtained
from s pairwise vertex-disjoint copies C}, Cs, ..., C of C such that V(C;) = {u®, vj(l})L |1 <

j <21 <h <2} where u®, w® and vj(’})L respectively correspond to u, w and v;p, by adding

edges véf)lu(i“), végu(”l) where indices 7 and i + 1 are read modulo s.

Lemma 3.2. Let s be an integer with s > 2, and let 'T' be a graph such that 'T' < H IfT eTy
and 3(s — 1) > |V(T)|,

Proof. Since T € T (note that |V (T")| > 4), there exists the integer ¢ with 1 < i < s such that
u® € V(T). Hence, since 3(s — 1) > |V(T)|, there exists the integer i3 with 1 < i3 < s such that
u(®) & V(T) and u'+Y € V(T). Without loss of generality, we may assume i3 = s. Let i, be the
maximum integer such that 1 <4 < s — 1 and ul) e V(T). Foreach1 <1i < iyandi = s, let

70 =T ANGV(C;) Uf{uip}). Note that T =T U (| ] T0).

1<i<iy

Claim 1. One of the following holds:

(i) T®) ~ K,;

(ii) T < Ay and u'V is the last vertex of Ay;
(iii) T < Ay and v\ is the last vertex of As; or

(iv) T®) < As and vV is the last vertex of As.
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Proof. If |V(T®) N {U2 L v22}| = 0, then V(T'®) = {u™M}, and hence (i) holds. Thus, we may
assume 1 < |[V(T®)) N {1)21, 22}| <2.

Case 1. [V(T®) N {vgﬁ, v$Y = 1.
Without loss of generality, we may assume vé‘? e V(T®),

In the case where |V (7)) N {vﬁ, w®}| = 0, we have V(T®)) = {vésf, uM}, which implies
that T7¢*) < A,. Thus (ii) holds.

In the case where |V (7)) N {vﬁ, w®}| = 1, without loss of generality, we may assume

’Ul ) e V(T(S ). Then V(T®)) = {vﬁ, vé‘f{, uM} or V(TH)) = {vﬁ, vf%, vé‘fi, uM} which implies
that 7®) < A,. Thus (ii) holds.

In the case where V(T®) N {vﬁ, w®}| = 2, we have vgs% ¢ V(T®) since T € T;*. Hence

V(T®) = {v w'®) u;> (D}, which implies that 7*) < Aj. Thus (iii) holds.

Case 2. |V( ©) N {0, 059} = 2.
In this case, we have w® ¢ V( ) and [V(T®) N {vl 1,7)1 }| < 1 since T € 7. In the
case where |V (7)) N {vl 1,0, 2}| = 0, we have V(T¥)) = {v2 1,v22, (1} which implies that
TG < A3 If [V(T®) N {0171,0172}\ = 1, we may assume U§,1 € V(T®). Then V(T®) =

{vl ( v2 ), vy () M} which implies that 7*) < Aj3. Consequently, (iv) holds. O

Claim 2. One of the following holds:

(i) TO) ~ Ky

(ii) T < Ay and u) is the first vertex of Ay;
(iii) T < Ay and u'™) is the first vertex of As; or

(iv) T < Ay and u'™) is the first vertex of A;.

Proof. Tf |V(T6)) N {v{"?) ,v% } = 0, then V(T() = {4}, and hence (i) holds. Thus, we
may assume that 1 < |V (T04) ﬂ {vf‘{), 1“5)}] <2.

Case 1. [V(T0)) N {v!®) p ,v12 N =1.
Without loss of generality, we may assume vﬁ‘i) € V(Tt),

In the case where |V (T0) N {vé“{ wi}| = 0, we have V(T()) = {ul0), vﬁ)}, which
implies 70*) < A,. Thus, (11) holds.

In the case where |V (704)) N {v2 7wt }| =1, without loss of generality, we may assume

) ¢ V(T )). Then V(T04)) = {y(i4) v§ . ,122 . }or V(T6) = {ul), vﬁ‘i), vg‘i), vg;)}, which

1mphes TG4 < A,. Thus, (11) holds.

In the case where |V (T04)) N {v2 ) w(}| = 2, Then we have 1)2 5 ) ¢ V(T since T € T
Thus V(T04)) = {u4) v; 1), vé 4 w(“)} which implies 7) < A,. Thus (iii) holds.

Case 2. |V (7)) N {v“ : 12 N =2.
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In this case, we have w() ¢ V(7)) and |V (T0)) N {v2 1 ,v22 "} < 1since T € 7. In the
case where |V (T@)) N {v S‘; : S; } = 0, we have V(T() = {y(i4) v§ R,vé 1, which implies

Tl4) < A;. Thus, (iv) holds.
In the case where |V (T0)) N {vz s S; } = 1, we may assume UQ 1 € V(T(). Then

V(T6)) = {ul), vﬁ), véz‘i)}, which implies 7) < A;. Consequently, (iv) holds. O

Claim 3. For each i with 1 < i <14 — 1, one of the following holds:

(i) TO ~ Ay, u' is the first vertex of Ay and vtV is the last vertex of Ay;
(ii) TW < A, u9 is the first vertex of As and uY is the last vertex of As;
(iii) T ~ Ay, u' is the first vertex of Ay and u+V) is the last vertex of As; or

(iv) T ~ Ay, u'® is the first vertex of Ay and u+V) is the last vertex of A;.

Proof. Since T is connected, we have ), u(+1) € V(T™W) and 1 < |V(T®) N {Uﬁ, vg}] <2.
Case 1. [V(T®) 0 {v}),0{}}] = 1.
We may assume that vﬁ € T, Since T is connected, we have 1 < [V(T®W) N {w®, v§i1}|
Suppose that |V (T®) N {w®, véli}| = 1. In the case where w® € T, we have V(T )
{u®, vﬁ)l, w®, vég, u(+D} ) which implies 7 ~ A,. Thus, (i) holds. In the case where vé
T®, we have V(T®) = {u® vll)l,vél, 40} or V(T@) = {u®,v{"), v}, 03}, u*+D}, which
implies 7 is a path with order 4 or T ~ As. Thus (ii) holds.
Suppose that ]V(T( ) N {w(’),v271}| = 2. Since T ¢ T*, we have vég ¢ T, Hence we
have V(T") = {u vt 1, ),vgf)l,u(i“)} which implies 7 ~ A,. Thus, (iii) holds.
Case 2. |V (T )ﬂ{vll,v Y =2.
Since T is connected and TV € ’T*, we have w §Z TW and |V (T Z))ﬂ{v2 L v2 2}| = 1. We may
assume v;l € V(TW). Then V(T®) = {u® vl ) o )2, vg)l, u(+D} ) which implies T0) ~ A;.

-

Consequently, (iv) holds. [

By the definition of 7 and Claims 1-3, we obtain 7'(= T) U U T@)) < J for some graph
1<e<iy

J € J. Consequently, the proof of Lemma 3.2 is complete. [

For an integer s > 2, let HY be the graph obtalned from s pairwise vertex-disjoint copies
Dy, D, ..., D, of Ky such that V(D;) = {u® v ] 1 < j < 3} by adding edges uv (+1)
u(i)véiJrl) :(3 1)

,u® where indices 7 and 7 + 1 are read modulo s.

Lemma 3.3. Let s be an integer with s > 2, and let T be a graph such that T' < H®. IfT €Ty,
then T' < Z, for some integer t > 2.

10
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Figure 6. Graph H 5(3)

Proof. If T is a path, then T < Z;, where t is the minimum integer such that ¢ > |V(T")| — 1, as
desired. If T' ~ Z,, for some integer m with m > 2, the assertion clearly holds. Thus we may
assume T Z *, forn’ > 2. Then T contains a triangle. Without loss of generality, we may assume
{vll), 1)2 ,ut} C V(T). Note that u*), v:gl) ¢ V(T). Let i5 be the maximum integer such that 1 <
i5s < s—1landu™ € V(T). Since T ~ Z* for some n > 2, we have |V (T )ﬂ{vl ,v2 0 )}| =1
for any 2 < i < i5. Therefore we may assume {vgi) | 2 < i <5} C V(T). Since T" ~ Z*
for some n > 2, we have |V (T') ﬂ{ (is+1) giﬁl) Z‘5+1)}| =2, say {vlz"Jrl : §i5+1)} C V(D).
Therefore we have V(T') = {u® v | 2 < i < isy U {u® v ) él), £Z5+1),v§i5+1)}. Hence
T ~ Z5;,__,, which contradicts T" € ’T*. Consequently, we obtain the desired conclusion. [l

Proof of Theorem 1.1. Let [,n and T be as in Theorem 1.1, and suppose that (54{K1, Ky,,T} is
a finite family. Since G4({K;, K;,,,T}) C Q~4({Kl, Ky, T}), Gi({K, K1, T}) is also a finite
family. It follows from Lemma 2.2 that one of (a) — (d) in Lemma 2.2 holds. If either (a) or (d)
in Lemma 2.2 holds, then one of (i) and (v) holds. Thus we may assume that either (b) or (¢) in
Lemma 2.2 holds.

Case 1. (b) in Lemma 2.2 holds.

By (b) in Lemma 2.2, T' € 7T5. For each s > 2, Hs(l) is a connected { K3, K 5 }-free graph with
5(H§1)) — 4. Since G4({K;, K, T}) is finite, there exists s; > 2 such that T’ < H'Y. Then by
Lemma 3.1, 7' < Y}* for some integer ¢ > 2 with ¢ # 1 (mod 4). Consequently (¢7) holds.

Case 2. (¢) in Lemma 2.2 holds.

By (¢) inLemma 22,7 € T or T € T,

Subcase 2.1. T' € T;*.

Note that 7" € 73 since 7;* C 7. For each s > Y0 ( I4+1, H? is a connected { K, K 3}-free
graph with 5(H§2)) — 4. Since G,({K;, K1, T}) is ﬁmte, there exists s > @ + 1 such that
T < H?. Then by Lemma 3.2, 7" < J for some graph J € 7. Consequently (¢i¢) holds.

Subcase 2.2. T' € 7.

For each s > 2, H!” is a connected { K, K 3 t-free graph with 6(H; MY > 4. Since G,({K,, K, s
T}) is finite, there exists s3 > 2 such that T < H§3 . Then by Lemma 3.3, 7" < Z; for some
integer t > 2. Consequently (iv) holds. O

11
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4. Proof of Theorem 1.2

By Theorem 1.1, the "only if”” part of Theorem 1.2 holds. In this section, we prove the ”if” part
of Theorem 1.2. It is suffices to show that

(A1) G, {Ki,K12,T}) (I >3, T is a connected graph) are finite families;
(A2) G, {K|, K1, P}) (Il >3, n>2 t>3)are finite families;

(
(
(A3) Gu({Ks, K1,,,Y;*}) (n>5, t > 2witht # 1 (mod 4)) are finite families;
(A4) Q~4({Kl, Ky, Zi}) (1 > 5, 3<n <4, t>2)are finite families; and

(

(A5) G,({K3, K1,,T}) (3 <n <4, Tisaconnected graph) are finite families.

_ Since G4({Ki. K12, T}) € GiI({K, Ki2}) = Gi({ K, Ki2, Ps}) and G4({ K, K10, P }) C
Gi1({ Ky, K1, P }), it follows from Lemma 2.1 that (A1) and (A2) hold. Let G be a connected
K3-free graph with 6(G) > 4, and let w € V(G). Then Ng(w) is an independent set of G and
there are 4 vertices x1, z2, 23,24 € Ng(w), and G[{w, x1, X9, x3,24}] =~ K 4. In particular, for
any integer n with 3 < n < 4, G4({K3, Ki,}) = (), which proves (A5). Thus, in the remainder of
this section, we show that (A3) and (A4) hold.

Let [ and n be integers with [ > 3 and n > 3, and let G be a graph having a vertex w of degree
at least R(l — 1,n). Then by the definition of R(I — 1,n), Ng(w) contains a clique C' of order
[ — 1 or an independent set I of size n. If the former holds, then {w} U C' induces a copy of K in
G; if the latter holds, then {w} U I induces a copy of K, in G. This implies that the maximum
degree of a { K, K ,, }-free graph is bounded by a constant R(/ — 1,n) — 1 (which depends on [
and n). Furthermore, it follows from Lemmas 2.3 and 2.4 that for each ¢t > 3 with ¢ £ 1 (mod 4),
the diameter of a connected { K3, Y;"}-free graph is bounded by the constant which depends on
t. Since it is known that every connected graph G satisfies |V (G)| < A(G)3m(@) 4 1 (see, for
example,[2]), the following propositions will complete the proof of (A3) and (A4).

* The diameter of all connected { K3, Y }-free graphs G with §(G) > 4 is bounded by a
constant (Proposition 4.4).

» For a fixed integer ¢ with ¢ > 2, the diameter of all connected { K 4, Z, }-free graphs G with
d(G) > 4 is bounded by a constant (Proposition 4.5).

We start with the following fundamental lemmas.

Lemma 4.1. Let G be a connected graph. Let u and v be two vertices of G, and let () = ugu; . .. u;
be a shortest u-v path of G, where | = distg(u,v), ug = u and u; = v. Let t, t' be integers with
0 < t' <t <. Then the following hold.

(1) Ift —t' > 2, then wyupy ¢ E(G).
(13) Ift —t' > 3, then Ng(us) N Ng(uy) — V(Q) = 0.

Proof. This lemma immediately follows from the assumption that () is a shortest u-v path. 0

12



Stars in forbidden triples generating a finite set of graphs |  Takafumi Kotani

Lemma 4.2. Let G be a connected Kjs-free graph. Let u and v be two vertices of G, and let
Q = uguy . ..u; be a u-v path of G, where uy = u and u; = v. Then the following hold.

(i) Foranyintegerstandt with) <t <t <I, ift—t' =1, then Ng(u;)NNg(uy)—V(Q) = 0.
(i7) For any integer t with1 <t <[ —1, E(Ng(u) — V(Q), {wi—1,uss1}) = 0.

Proof. Statement (i) immediately follows from the assumption that G is K3-free. Statement (ii)
immediately holds by (i). [

The following lemma is used in the proof of Proposition 4.4

Lemma 4.3. Let | be an integer with | > 7, let G be a connected {K3,Y, }-free graph with
d(G) > 4 and diam(G) > I. Let u and v be two vertices of G such that | = distg(u,v), and
let Q) = uguy...u; be a shortest u-v path of G, where uy = u and u; = v. Then for any i with
0<i<I1—17 Ng(u;) N Ng(ujr2) — V(Q) # 0 for some j withi < j < i+ 5.

Proof. Let i be an integer with 0 <7 < [ — 7. By way of contradiction, suppose that
Ne(u;) N Ne(ujye) —V(Q) =10 (4.1)

for any j with¢ < 7 <7+ 5.
Since 6(G) > 4, |[Ng(us) — V(Q)| > 2. For each ¢t with 0 < ¢ < [, we take two vertices a,
by € No(u) — V(Q). Since G is Kj-free,

aby & E(G) 4.2)
forO0 <t <[ Fort,t/withi <t <t <i+7,
{(lt, bt} N {(lt/, bt’} = @ (43)

by Lemma 4.1(ii), Lemma 4.2(i) and (4.1).

Let k be an integer with i+ 1 < k < ¢+5. Take two vertices « € {ay, b, } andy € {ags1,br+1}
(note that x # y by (4.3)). Since G is Y;'-free, Gug_1, ug, Ug+1, Ug+2, T, y] 2 Y5, which implies
that

for any vertices x € {ax, br} and y € {ax+1,br11}, 2y € E(G)

by Lemma 4.1(i), Lemma 4.2(ii) and (4.1). Since k is arbitrary,
for any vertices © € {as, b} and y € {a;41,bi41}, 2y € E(G) 4.4)
for any t with i + 1 <t < i+ 5. Since G is K3-free,
there is no edge between {a, b;} and {a; 2,612} 4.5)

for any ¢t with i + 1 < t < i + 4. Since G is Y, -free, Ga; 10, Gir3, Gita, Qits, bita, bivs] 2 Y5,
which implies that there exists an edge between {a; 2, b; 12} and {a;.5,b;15} by (4.2), (4.4) and
(4.5). Without loss of generality, we may assume that

a;100;45 € F(G) (see Figure 7).
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i i+1 i+2 i+3 i+4 i+5 i+6 i+7

Figure 8. Gla;y2, Gits5, Git1, Dit1, Give, biye)

Since G is K-free,

Ai11Qiy5, Dip10iy5, Qip6Qito, bitetiya & E(G) (4.6)

Since G is Y5 -free, Gla;i2, @ivs, @iv1, biv1, aive, bive] % Yy, which implies that there exists an
edge between {a;,1, b;11} and {a; ¢, bi16} by (4.2), (4.4) and (4.6). Without loss of generality, we
may assume that

a;110;46 € F(G) (see Figure 8).

Then wguy...u;11a; 1101 6Ui16.--uy is a shortest u-v path of G having length (i + 1) +3+ {I — (i +
6)} = [ — 2, which contradicts the fact that distg(u, v) = I. O

Proposition 4.4. Let G be a connected { K3, Y, }-free graph with 6(G) > 4. Then diam(G) < 15.

Proof. By way of contradiction, suppose that diam(G) > 16. Take two vertices u and v of G with
distg(u,v) = 16, and let Q = ugu;...ui6 be a shortest u-v path of G, where ug = u and u16 = v.
By Lemma 4.3, N¢(u;,) N Ng(uj,+2) — V(Q) # 0 for some j; with 0 < j; < 5. Let aj, 1o be a
vertex of G with a;, 12 € Ng(uj,) N Ne(uj+2) — V(Q).

By Lemma 4.3, Ng(u;) N Ng(u;ie) — V(Q) # 0 for some ¢ with j; + 3 <4 < j; + 8. Let j
be a minimum integer with j; + 3 < jo < j; + 8 such that Ng(uj,) N Ne(ujy42) — V(Q) # 0.
Hence, for any 7’ with j; + 3 < 7/ < jp — 1,

Ne(uy) N Ne(ujri2) — V(Q) = 0. 4.7)

14
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s ho h+l h+2 j+3 ji+4 h=2 h=1 jo h+1 jp+2

Figure 9. u-v path of G

Let a;, be a vertex of G with aj, € Ng(uj,) N Ne(uj42) — V(Q). Since 6(G) > 4, Ne(w,) —
V(Q) # 0 for all ¢t with j; + 3 < ¢ < jo — 1. For each ¢ with j; + 3 < ¢t < j, — 1, take a vertex
a; € Na(u) — V(Q).
Since G is a Y3 -free, Gum, Umi1, Umt2, Ums3, Gmi1, Gmio] 2 Yy for any m with j; + 3 <
m < jo — 2. Hence
{14404, +5, Q155,465 - A1, C E(G) (4.8)

by Lemma 4.1(i), Lemma 4.2(1)(i1), and (4.7).

If wj, 20,44 € E(G), then ugus...uj, 4205440, +5.-jy—10j,Uj, 42Uj, 43-.- U 1S @ u-v path of
G having length (j; +2)+ 14+ {jo — (j1 +4)} + 1+ {16 — (j» + 2)} = 14, which contradicts the
fact that dist(u, v) = 16. Thus we may assume that u;, 120,44 ¢ E(G). Therefore, since G is a
Yy'-free, G[uj1+27 Ujy +35 Ujy+45 Ujy +55 Aj1 43, aj1+4] # Y5, we obtain

aj;+305,+4 € E(G) 4.9)

by Lemma 4.1(i), Lemma 4.2(i)(ii), and (4.7).

If wj, 105,43 € E(G), then uguy ...ty 105,130, 440y 1 Gy Ujy 2y 13- Ure 18 @ u-v path of
G having length (j; + 1) + 1+ {jo — (j1 +3)} + 1 + {16 — (jo + 2)} = 14, which contradicts the
fact that distg(u, v) = 16. Thus, we may assume that

Uji+10j,+3 ¢ E(G>

If a;,4ouj 44 € E(G), then uguy...uj aj, +2Uj, 14U, +5...U15U16 1S @ u-v path of G having length
J1+1+1+{16—(j1 +4)} = 14, which contradicts the fact that dist;(u, v) = 16. Thus, we may
assume that

Ay +2Uj1 44 ¢ E(G>
Therefore, since G is a Yy'-free, Gluj, 11, Uj 12, Uj,+3, Uj, +4, Gj 42, @5, +3] % Y5, and hence we
obtain

aj,+204,13 € E(G) (4.10)

by Lemma 4.1(i), Lemma 4.2(1)(i1), and (4.7).

Consequently, we obtain ugu;...Uj, Qj, 4205, 4+3...(jy— 1G5, Ujy +2Ujy+3...U16 DY (4.8), (4.9) and
(4.10) is a u-v path of G having length j; + 14 {jo — (j1 +2)} + 1+ {16 — (j2 + 2)} = 14, which
contradicts the fact that distg(u,v) = 16 (see Figure 9). H

Proposition 4.5. Let t be an integer with t > 2, and let G be a connected { K, 4, Z; }-free graph
with §(G) > 4. Then diam(G) < 2t — 1.
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Proof. Suppose that diam(G) > 2t. Take two vertices u and v of G with distg(u, v) = 2¢, and let
Uoly...ug be a shortest u-v path of G, where ug = u and uy;, = v. By 6(G) > 4, we can take two
distinct vertices a;, a; € Ng(ui) — {uws—1, ury1}. Since G is K 4-free, Glug, wi—1, Ui1, r, ap| %
Ky 4,i.e. {us—1, U1, ar, ap } is not an independent set of G. With Lemma 4.1(i) in mind, we divide
the proof into two cases.

Case 1. E({u;—1,ups1},{ar,arv}) # 0. Without loss of generality, we may assume that
w10y € E(G). Since G is Z-free, neither {uy, az, ug_1, ..., ug} nor {ws_1,az, Uy, ..., ug—1} in-
duces a copy of Z; in G. Thus, there exist indices 7; and 75 with 0 < i) <t —2andt+ 1 < iy <
2t — 1 such that u;, a;, u;,a; € E(G) by Lemma 4.1(i). Then wou...w;, @y, Uiy 11... U 1S @ u-v path
of G having length iy + 2 + (2t — i) (< (t —2) + 2+ 2t — (¢t + 1) = 2t — 1), which contradicts
the fact that dist¢ (u, v) = 2t.

Case 2. a;a; € E(G) Since G is Z;-free, neither {a, a}, us, ..., uq } nor {ay, ay, uy, ..., ug—1} in-
duces a copy of Z; in G. Thus, E({u1,ug, ..., us—o}, {as, ap}) # 0and E({usro, Uirs, ..., U1}, {as, ap}) #
() by Lemma 4.1(i). Letb € {a;,a;} and u;, € {uy,us,...,u;_2} be two vertices such that
buj, € E(G), and let ' € {at,a;} and w;, € {upp2, uts, ..., uxy_1} be two vertices such that
b'uj, € E(G). Note that if b # V' then b’ € E(G).

If b = ¥/, then uguy...uj, buj,u ,41...uz is a u-v path of G having length j; + 2 + (2t — j3) (<
(t—2)+2+2t—(t+2) = 2t — 2), which contradicts the fact that distg(u,v) = 2t. If
b # U, then uguy...u;,bb"uj,u ,41...ug is @ u-v path of G having length j; + 3 + (2t — j2) (<
(t —2)+ 342t — (t+2) =2t — 1), which contradicts the fact that distg(u, v) = 2t. O
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