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Abstract—Metaheuristic algorithms are crucial for solving complex and dynamic problems in computational optimization. It is essential
to fully understand how an algorithm searches, as it helps to improve the algorithm and its applications in various domains. This paper
provides a detailed analysis of how the Simulated Kalman Filter algorithm searches for optimal solutions. The SKF algorithm is an
optimization method inspired by the Kalman filter estimation techniques. The algorithm was introduced in 2015 to address unimodal
problems. Since its inception, the SKF algorithm has improved and is used to solve many optimization problems. Our study aims to
bridge the gap in existing research by investigating how SKF effectively balances search space exploration and known solution
exploitation. Through systematic experimentation using the Brown function as a benchmark, we explored the social dynamics and
movement style of the SKF algorithm, in addition to the convergence efficiency and accuracy. When we applied the same approach as
suggested in the referenced paper, we gained insights into SKF’s unique strengths and limitations of SKF when compared to other
algorithms. The findings illustrate SKF’s unique capabilities in handling the exploration-exploitation trade-off. This study helps to set
the foundation for creating more advanced algorithms and optimization strategies in the future. Future research will examine how
enhancements to the SKF algorithm impact and enhance its search behavior.
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1990s, and Ant Colony Optimization (ACO) which was
I. INTRODUCTION introduced by Marco Dorigo are widely adopted state-of-the-
art metaheuristic algorithms. Each has numerous variants and
improvements. The categorization of metaheuristic
algorithms differs from the way researchers look at it.
Evolutionary Algorithms (EA) and Swarm Intelligence (SI)
were among the earliest and most essential metaheuristic
algorithms [6]. Both philosophies are rooted in natural
phenomena. EAs are influenced by genetics and natural
selection, whereas self-organized animals inspire SIs. GA
falls under EAs. The GA imitates the natural-selection
process. It selects the fittest individuals for reproduction to
produce offspring for the next generation. In addition to GA,
EA encompasses other categories, such as Evolutionary
Strategies (ES) and Differential Evolution (DE). ES focuses
on adapting strategy parameters, such as the mutation and
crossover rates. Researchers primarily use ES to solve real-
valued optimization problems. DE uses vector differences to

Metaheuristic algorithms are vital in solving complex
optimization problems across various domains. Meta-
heuristic algorithms are known for being flexible, robust, and
excellent at finding the best solutions to a wide range of issues
without relying on specific problem structures or gradients
[1]. These algorithms are generally simple to implement and
require fewer parameters than traditional optimization
methods [2]. Metaheuristics provides a better exploration-
exploitation trade-off, solution quality, and computing time
[3]. They are beneficial for high-dimensional problems that
conventional ~methods cannot resolve [4]. These
characteristics make them more reliable and efficient than
exact methods [3] and have led to their widespread use in
engineering, finance, and computer science [5].

The list of state-of-the-art metaheuristic algorithms is long.
Genetic Algorithm (GA) which was introduced by John
Holand in tghe 19705, Pzzrticle Swarm Optimizationy(PSO) perturb the popullation Yectors. The .DE.algorithm is also
introduced by James Kennedy and Russel Eberhart in the excellent for solving continuous optimization problems. PSO
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and ACO belong to the SI. The social behavior of birds and
fish inspires PSO. In PSO, the individuals in the swarm move
towards the best solution by following the top-performing
individuals in the swarm. ACO is based on the behavior of
ants seeking a path between their colony and source of food.
ACO is particularly useful for discrete optimization such as
routing and scheduling.

Interestingly, some sources provide more specific
categorizations. For instance, [7] presented two more
categories: physics-based, and human-based algorithms.
Several other sources of inspiration have influenced the
development of various algorithms. Researchers have
developed many algorithms to search for the best solutions,
each with its own unique traits and abilities [8], [9].
Biological, chemical, and physical phenomena inspire most
metaheuristic algorithms. In addition to these natural sources
of inspiration, estimation-based methods such as the Kalman
filter and Finite Impulse Response (FIR) are highly inspiring
[10]-[17]. These algorithms integrate empirical estimation
techniques in their search strategies and demonstrate
improved performance across various problem domains.
Among all estimation-based optimization algorithms, the
Simulated Kalman Filter (SKF) algorithm stands out for its
unique approach to balancing exploration and exploitation
using the Kalman filter approach.

Exploration—exploitation balance is a fundamental concept
in meta-heuristic algorithms, reflecting the trade-off between
exploring the search space for new solutions and exploiting
known reasonable solutions to find even better solutions
[1],[18]. This aspect is essential in all optimization processes.
To achieve this balance, metaheuristic algorithms employ
various strategies. For instance, the Adaptive Balance
Optimization Algorithm (ABOA) uses a global search phase
and a local search phase controlled by a fixed parameter to
balance exploration and exploitation throughout the iterative
process [19]. Similarly, the Memetic Chaotic Gravitational
Search Algorithm incorporates a quasi-Newton method to
enhance the exploitation capabilities while maintaining
exploration through chaotic mechanisms [20]. Different
algorithms approach this balance uniquely. The Balance
Adjustment based Chaotic Gravitational Search Algorithm
(BA-CGSA) introduces a sine random function and balance
mechanism to improve diversity and prevent premature
convergence [21]. The Spherical Search Gravitational Search
Algorithm (SSGSA) combines the effective exploration of
Spherical Search with the exploitation capabilities of the
Gravitational Search Algorithm [22]. These diverse
approaches highlight the ongoing research efforts to optimize
the exploration-exploitation balance in metaheuristic
algorithms.

Metaphors are of significant importance in the formation
and description of metaheuristic algorithms. It helps in
understanding and effectively conveying complex ideas. In
the seminal work by Hayward and Engelbrecht, the authors
highlighted a critical gap in the meta-heuristic research
domain, specifically the under-explored area of search
behavior characteristics [23]. In addressing this gap, the
authors created a guide that outlines a straightforward
approach for characterizing search behavior that researchers
can universally apply to various types of meta-heuristics. This
study aims to shed light on the dynamics of the SKF search
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process through a search behavior analysis based on this
method.

The importance of a detailed understanding of the search
behavior in optimization algorithms cannot be overstated.
This behavior ultimately determines an algorithm's efficiency,
effectiveness, and applicability to various problems. The
number of journal papers on metaheuristic research surged
from 1994 to 2021, and the application areas were diverse
[24]. Reference [25] highlighted the similarities between new
algorithms (algorithms with high citation counts from 2000)
and classical algorithms by identifying common features
shared among different algorithms. He suggested that many
new algorithms reassemble existing concepts from classical
algorithms rather than introduce fundamentally new ideas.
Considering this, our study aims to significantly advance the
understanding of the Simulated Kalman Filter algorithm by
providing a detailed analysis of its search behavior. Unlike
previous works that primarily focused on performance
metrics, this research delves into the mechanics of how SKF
effectively balances exploration and exploitation. This novel
perspective helps to identify specific strengths and potential
areas for enhancement, positioning SKF as a versatile tool for
various optimization problems. This study presents exciting
possibilities for further algorithmic advancements and
practical uses of SKF by thoroughly examining SKF’s search
behavior in terms of its social dynamics and movement style.

II. MATERIALS AND METHOD

The SKF algorithm is an optimization approach inspired by
the estimation abilities of the Kalman Filter [26]. Its purpose
is to address global optimization problems by treating the
state estimation problem as an optimization challenge. SKF
believes that estimating the state of a dynamic system is
similar to finding the best solution in a search space for
optimization problems. SKF views the optimal solution as a
time-independent estimate. The term “state” in SKF
represents an agent’s location in the search space of the
optimization problem. Similar to many metaheuristic
algorithms, SKF employs a population of agents that
continually adjust their positions in the search domain to
approach the best possible solution. Each agent functions as
its Kalman filter to estimate the optimal solution based on a
simulated measurement process.

A. Predict-Measure-Estimate Cycle

The SKF algorithm employs three well-known steps in the
Kalman filter operation for optimization. This process allows
each agent to update its best estimate of the optimal solution
based on simulated measurement. Fig. 1 illustrates the
simplified principle of the SKF algorithm, where N refers to
the total agents used.

The SKF algorithm shown in Fig. 2 is crucial for visually
understanding the flow and structure of the SKF algorithm. It
provides a clear overview of how Kalman equations are
adapted to the SKF algorithm. The equations are divided into
three sets: the first one comprises the prediction. In the
original SKF algorithm, the predicted value was the
previously estimated value. The second one is the simulated
measurement, which explores the search space. The simulated
measurement mimics the measurement update in a standard
Kalman filter using the best-so-far solution (Xtrue) as the



guide. The last one is for estimation. The estimate equations
ensure that all agents are improving towards the optimal
solution. This iterative process continued until the stopping
condition was satisfied.
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Fig. 1 Simplified principle of Simulated Kalman Filter algorithm
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Fig. 2 shows the suggested SKF parameters. The results of
the experiments in [27]-{29] show that altering the P, Q, and
R parameters had no impact on SKF algorithm’s
effectiveness. However, this study employed the original SKF
algorithm for the analysis.

Generate initial population & initialize SKF parameters
X(0) = {X1(0) + X2(0) + ... + X;(0) + ... + Xn(0)}
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Fig. 2 Flowchart of Simulated Kalman Filter algorithm

III. RESULTS AND DISCUSSION

In minimization problems, the global minimum is the best
solution, whereas the local minimum is a lower point but not

the absolute lowest point. When analyzing metaheuristics,
researchers typically examine the quality of solutions
produced. This evaluation involves assessing the solutions'
proximity to the optimal solution or global minimum.

A. Benchmark Objective Function

Several studies have discussed the importance of
developing comprehensive and challenging benchmarks for
multi-objective optimization in the context of benchmark
functions. These include the proposal of new benchmark
functions based on zigzag functions [30], the development of
a generative benchmarking approach for many-objective
problems [31], and the introduction of mixed-integer
benchmark problem suites [31]. These benchmarks aim to
provide a diverse set of test problems with various features
and difficulties in effectively evaluating the performance of
the optimization algorithms.

This study focuses on optimizing the Brown function [32].
The Brown function is a benchmark function used to evaluate
global optimization algorithms. Because of its unique
mathematical characteristics, it is especially valuable for
testing an algorithm’s performance in steep and flat regions.
In the experimental setup, we set the dimensions to 20 and
used an SKF population size of 30. By using the same
problem and experimental setup, researchers can compare the
SKF search behavior with other algorithms studied in [23].

The Brown function is highly curved, continuous,
differentiable, and scalable. It is also non-separable. This
means that the terms in the function are interdependent,
involving the products of different input variables. This key
feature makes it challenging for optimization algorithms to
determine the global minimum efficiently. Equation 1 defines
the Brown function for x; between -1 and 4.
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Fig. 3 shows the surface plot of the Brown function in 2-
dimension. The function is smooth, and small changes in the
input result in small changes in the output.

Surface Plot of Brown Function
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Fig. 3 Surface plot of Brown function

The Brown function has a single global optimum (i.e., no
local minimum). However, steep gradients and complex
interactions between variables can make it appear locally
multimodal. The function reaches its lowest value of 0 when



all input variables are 0, as shown in Fig. 4, marked by the
red dot.

The Brown function presents a more complex landscape
than the Sphere function. Compared to the Rosenbrock
function, the Brown function presents greater challenges
owing to its strict penalty for deviations from the optimum
path. By using the Brown function, we can determine how
well a metaheuristic algorithm converges, the accuracy of its
solutions, and the overall efficiency of the algorithm.

Contour Plot of Brown Function (log scale)
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Fig. 4 Contour plot of Brown function in log scale

To better visualize the Brown function, we displayed its
surface and contour on a graph. We specifically focused on
the range [-1,1], as shown in Fig. 5. The 3D surface plot shows
the smooth surface of the Brown function with a valley and
peaks, indicating regions of low and high fitness values.
Closer contour lines at the sides indicate steeper gradients,
whereas widely spaced lines represent flatter regions at the
center of the plot.
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Fig. 5 Surface and contour plot of Brown function in [-1,1]

B. Search Behavior in SKF

Exploration and exploitation are two well-known search
behaviors in the field of optimization. Achieving the right
balance is critical for the performance of metaheuristic
algorithms. This balance affects the capability of the
algorithm to find global optima, steer clear from local optima,
and converge efficiently. Many approaches attempt to switch
from exploration to exploitation as the quest progresses [33].
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Metaheuristic algorithms depend on exploration behavior to
discover promising regions within a search space. Exploration
typically occurs at the beginning of the search process.
Exploration is necessary; however, excessive exploration can
be inefficient. Algorithms may overlook promising solutions
if they require too much time to explore. Exploitation
behavior allows metaheuristic algorithms to intensify their
search for the best solutions. This behavior helps the
algorithms converge on the optimal solution. However,
excessive exploitation can lead to the algorithm to quickly
becoming trapped at a sub-optimal location.

In the SKF, the search space is initially populated
randomly. This injects a high level of exploration at the
beginning. The SKF algorithm continues with the current
solution during the prediction step. This allows for further
exploration of promising solutions. The measurement
equation includes a sine function, helping the SKF agents
explore, guided by their current best solution. Adding a
random term to the sine function renders the measurement
process more stochastic and can influence the search. The
Kalman estimation equations play a vital role in exploitation.
Agents in SKF progressively refine their estimates of the
optimum solution based on their simulated measurement
values and previous estimates. Initially, the Kalman gain was
set to favor exploration, giving more weight to new
information from the simulated measurements. As SKF
agents gather more confidence in their estimates, the search
steers towards a more precise solution. These two factors
cause a gradual shift from exploration to exploitation, as the
search continues. Reference [34] offers a tutorial on the
population-based SKF algorithm. This includes a numerical
example, which makes it easier to understand.

Various studies have demonstrated that incorporating
adaptive mechanisms, hybrid approaches, and novel search
strategies can significantly enhance the exploration-
exploitation balance, improving performance across various
optimization problems [35],[36]. Researchers have made
efforts to enhance the performance of SKF algorithms. A brief
review of the SKF algorithm has identified approximately 16
fundamental improvements [37]. Table 1 lists the types of
modifications applied to the SKF algorithm and the specific
mechanism employed. Most of the improvements are made to
increase the exploration capability of the SKF algorithm to
avoid premature convergence. Researchers have enhanced the
SKF algorithm in the prediction, measurement, and
estimation steps.

References [38]-[40] use opposition-based learning as the
prediction operator. This mechanism helps the algorithm
explore a wider area by considering both the predicted and
opposite solutions. Integrating a second algorithm can help
the SKF algorithm explore a wider range of search areas. This
second algorithm was used to predict the solutions because
the original SKF algorithm lacked a prediction mechanism.
PSO and Gravitational Search Algorithm (GSA) are two
algorithms that have been tested as prediction operators for
SKF algorithms [41],[42]. In [43]-[45], different approaches
were discussed for implementing the algorithms as prediction
operators. Reference [46] suggested using the Sine Cosine
Algorithm (SCA) to explore and exploit the simulated
measurement, which was proven effective. Reference [47]



suggests considering the opposite solution after the estimation
step to enhance the exploration of the SKF algorithm.

Researchers have observed that this mechanism prevents
the algorithm from prematurely converging to a local
optimum by utilizing the current optimum solution to generate
the opposite population. Another way to improve exploration
behavior is by introducing a mutation operator. In [48], a
mutation operator was introduced after the estimation step. A
mutated solution was used to replace one of the solutions.
Depending on the fitness value, the mutated solution either
replaces the best-so-far solution, leads the search in the next
iteration, or replaces any solutions. Improving exploration
behavior is not the only way to enhance the performance of
an algorithm. In [49], the authors enhanced the SKF
algorithm’s exploitability by adding an exponential term to
the estimation equation. This compelled the algorithm to take
larger steps in the early optimization stages and proved
effective.

Finally, the SKF algorithm can be improved by changing
its update mechanism. In the original SKF algorithm, agents
update their solution estimation after completing all agents'
fitness evaluation and prediction measurement cycles.
However, [50] showed that allowing an SKF agent to update
its estimation separately with the entire population resulted in
better performance. Therefore, the update mechanism in SKF
shows promises for improving its ability to explore and
exploit resources. References [51]-[53] researched further on
adapting the update mechanism by switching between
synchronous and asynchronous updates to further improve
performance. Based on these findings, the impact of the
iteration strategy on SKF algorithm is influenced by the
presence of memory.

TABLEI
IMPROVEMENTS TO THE EXPLORATION AND EXPLOITATION CAPABILITY OF
THE SKF ALGORITHM
Ref. Type of Specific Behavior
Modification Mechanism Improved
[38]- Prediction Opposition-  Exploration
[40] operator based
learning
[41]- Prediction Hybrid with  Exploration
[45] operator another
algorithm
[46] Measurement Hybrid with  Exploration and
method another exploitation
algorithm
[47] Estimate equation ~ Opposition-  Exploration
based
learning
[48] Estimate equation =~ Mutation Exploration
operator
[49] Estimate equation ~ Exponential ~ Exploitation
term
[50]- Update Adaptive Exploration and
[53] mechanism switching exploitation

In summary, SKF’s search behavior is driven primarily by
it predict-measure-estimate cycle. Each step uniquely
contributes to the algorithm efficiency:

1) Predict step: This step allows each agent to project its
current state into the future. This projection introduces an
opportunity for exploration, considering that future states can
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lead to an optimal solution. Variants using opposition-based
learning and hybrid approaches during the prediction step
help explore a wider area, facilitating the exploration of a
broader region of the search domain. These approaches
significantly enhance the exploration capability of SKF, thus
reducing the risk of premature convergence.

2) Measure step: Each agent’s prediction was refined
using a simulated measurement process in the measurement
step. A balance between exploring new areas and exploiting
existing knowledge is crucial. Adapting a suitable algorithm
that can balance exploration and exploitation in this step may
improve the accuracy of the SKF algorithm.

3) Estimate step: The estimating step involves updating
the agent’s position based on simulated measurements.
Dynamic adjustment during this step aids in further
exploration or exploitation throughout the search process.
Variants using opposition-based learning and mutation
enhance the SKF algorithm's ability to escape local optima by
exploring more regions containing better solutions. One might
also decide to refine good solutions effectively to avoid being
trapped in local optima.

C. Visualizing SKF Search Behavior

In addition to the solution quality, a thorough analysis of
meta-heuristic behavior should be conducted so that better
improvements can be made to the algorithms [54]. The SKF’s
exploration and exploitation behavior in solving the unimodal
Brown function is reflected in the convergence curve in Fig.
6. The convergence curve depicts how the SKF’s estimate
evolves over 500 iterations. The y-axis measures the fitness
value of the best solution so far (Xtrue). In the initial stages,
the SKF prioritizes exploration to successfully traverse the
search space to locate the region containing the global
minimum. This is evident from the steep decrease in fitness
values found during the first few iterations. Because SKF
focuses on a promising region, the curve exhibits a gradual
descent.

Convergence Curve
Simulated Kalman Filter
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Fig. 6 Convergence curve for Simulated Kalman Filter

This section demonstrates the visualization of social
dynamics and movement style in SKF to understand the
algorithm's search behavior characteristics further.



1) Social Dynamics:

Social dynamics are used to understand how information is
shared between individuals in a population [23]. Reference
[55] suggests that incorporating problem-specific dynamics
into metaheuristics could improve performance in certain
scenarios. Two characteristics can be observed under social
dynamics: improvement frequency and population turnover.
SKF has a fixed population size. Therefore, the improvement
frequency matrix of 30 individuals x 500 iterations will
contain a value of ‘1’ if the individual’s fitness improves at
the specific iteration or a value of ‘0’ if otherwise. As all
agents in the SKF algorithm make their own estimation of the
optimum solution and continue to the next iteration, their
improvement statuses are logged consistently after the
estimation step. The colored rectangles in Fig. 7 are plotted
with iterations along the y-axis and SKF agents on the x-axis.
Each blue-colored rectangle for each iteration represents
where an individual improves fitness. From Fig. 7, we can see
the freshness of information in SKF agents throughout the 500
iterations from the existence of the blue rectangles for all
agents sporadically from the start until the end. There is no
large uncolored area that can be seen, as all agents continue
to improve their own estimation and share the information
with the whole population in every iteration. The solution
with the highest fitness score is identified, leading the search
for the subsequent iteration. This cycle continued until the
stopping conditions were satisfied. Comparing this finding
with the findings by Hayward and Engelbrect in [23], we can
see the similarity in the information freshness between the
SKF and DE algorithms. The population turnover figure is
interpreted as a heatmap in Fig. 7, plotting the number of
individuals that changed positions in each iteration.

Population Turnover
Simulated Kalman Filter

Improvement Frequency
Simulated Kalman Filter

201

Tterations
Teration s

300

Individuals

Fig. 7 Basic visualization of improvement frequency combined with
visualization of population turnover (with a 1% threshold) for the Simulated
Kalman Filter algorithm.

The bluer the color, the fewer the number of individuals
changing positions, and inversely, the redder the color, the
larger the number of individuals changing positions at every
iteration. In this case, the same threshold as in [23] was used
to account for a specific position change size. Only position
changes that were more than 1% of the space size problem
were logged. In the case of SKF, all agents change positions
at every iteration except for the best so-far solution. By
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eliminating insignificant position changes, the minimum
number of agents changing positions in an iteration is 18. This
differs from the DE algorithm because less than half of the
DE population changes positions in each iteration. Except for
GA, which has a persistent population turnover of around
25%, SKF, like other metaheuristics, has a reduced number of
individuals, making a turnover of significant size towards the
end of the search due to exploitation kicks in. Based on the
social dynamics of the SKF algorithm, we can see that the
amount of good information is fresh and well-distributed
among all individuals throughout the population. From the
improvement frequency and population turnover, we can see
that the number of movements in the SKF algorithm is highly
related to the number of improvements made.

A bar chart showing each individual's total number of
improvements is illustrated in Fig. 8 to provide a quick
comparison of which individuals improved the most. Based
on the figure, the spread across the number of individuals
shows uniform behavior, meaning that all agents are equally
responsible for searching, and no elitist strategy is employed.

Total Number of Improvements for Each Individual
Simulated Kalman Filter
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Fig. 8 Quick comparison of the total number of improvements for each

individual in the Simulated Kalman Filter.

Improvement Frequency Over Iterations

Simulated Kalman Filter
30 T T T

a3
o

I
=

I

i

400

il 'u. N

Number of Agents Improving
o
_—

o
=]
T

o
T

250 300 360 450
Iterations

100 150 200 500

Fig. 9 Number of agents improving for each iteration in the Simulated
Kalman Filter.

Out of the 15000 position changes (30 agents X 500
iterations), approximately 6749 movements resulted in
locations with better fitness values. On average,
approximately 45% of the movement by each SKF agent



exploits near the best solution, whereas the remaining 55%
explores the search space. The improvement frequency status
over the iterations fluctuates around 13 (median value), as
illustrated in Fig. 9. Over 500 iterations, most of the time,
around 12-16 agents (approximately 40%-53%) make
positive improvements in every iteration. This high
percentage indicates how well the algorithm engages the
agents involved in the search process for a better solution.

In summary, the improvement frequency and population
turnover in metaheuristics are essential factors in balancing
exploration and exploitation, ultimately affecting their
capability to escape local optima and efficiently reach optimal
solution [56].

2) Movement Style:

Understanding movement style helps us see how
individuals’ movements affect algorithm improvement [23].
Metaheuristic algorithms employ various movement styles to
navigate around the search space effectively. This diversity in
movement styles contributes to the algorithm’s performance
[57]. We can view this in two ways: the size of the steps taken
and the quality of the steps taken. The average change in the
step size for each iteration is logged to measure the sizes of
the steps taken. Fig. 10 shows the shape of the footprint of the
SKF algorithm. No normalization was performed in this case.
The higher the peaks, the larger the number of steps taken.
Looking at the SKF step footprint pattern, we can see a sharp
decrease in step size at the beginning of the iteration. This
pattern is similar to that of the initial PSO pattern. However,
after that, we can see that the step sizes stabilize, with some
minor fluctuations. This indicates that SKF agents make more
minor adjustments as they refine their estimation of the
optimal solution. The large spikes in the earlier iterations
suggest that the algorithm makes significant changes based on
exploring the simulated measurements.

Step Footprint
Simulated Kalman Filter
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Fig. 10 Step footprint visualization for the Simulated Kalman Filter.
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Fig. 11 shows the quality of the step obtained through the
step fitness figure. The change in fitness values before and
after an estimate for each iteration was logged regardless of
positive or negative changes. Then, the average fitness
changes were used for visualization. We used a scatter plot on
a log scale following [2]. The distribution of large to minor
data points is essential when evaluating the fitness value
pattern. In contrast to Fig. 10, the step fitness plot shows that
the most significant improvement occurred. The scatter plot

134

shows a large change in fitness at earlier iterations. By
comparing Fig. 10 and 11, we can see the influence of the size
step on its quality. With an increasing number of iterations,
the change in fitness decreases. This shows that SKF agents
converge towards a stable estimate around the optimal
solution. The occasional significant shift in fitness during the
second half of the search indicates the SKF algorithm’s ability
to continue exploring. This behavior is a unique characteristic
of SKF and is not observed in DE, ES, or PSO.
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Fig. 11 Step fitness visualization for the Simulated Kalman Filter.

Interestingly, initialization methods can significantly affect
step sizes and quality. The diagonal linear uniform
initialization (DLU) technique improves convergence speed
and solution accuracy by adopting subspace sampling instead
of the whole space [58]. This update mechanism of the
algorithm enhances both precision and convergence rate.

IV. CONCLUSION

In conclusion, it is essential to understand the search
behavior to improve optimization research and practice. With
a complete understanding of the SKF’s operations and
behavior, we can hone the algorithm to solve problems more
effectively and use it in different fields. Our study proved the
unique search behavior of the SKF algorithm through its
social dynamics and movement style. Our research confirms
that the SKF algorithm effectively balances exploration and
exploitation even with high convergence. Future research
could focus on mapping the behaviors of improved SKF
algorithms using the same measure to systematically assess
which changes have the most significant impact on the
algorithm's effectiveness. In addition to investigating versions
of SKF algorithms, researchers can compare them with other
popular methods for better positioning.
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