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Abstract—Metaheuristic algorithms are crucial for solving complex and dynamic problems in computational optimization. It is essential 

to fully understand how an algorithm searches, as it helps to improve the algorithm and its applications in various domains. This paper 

provides a detailed analysis of how the Simulated Kalman Filter algorithm searches for optimal solutions. The SKF algorithm is an 

optimization method inspired by the Kalman filter estimation techniques. The algorithm was introduced in 2015 to address unimodal 

problems. Since its inception, the SKF algorithm has improved and is used to solve many optimization problems. Our study aims to 

bridge the gap in existing research by investigating how SKF effectively balances search space exploration and known solution 

exploitation. Through systematic experimentation using the Brown function as a benchmark, we explored the social dynamics and 

movement style of the SKF algorithm, in addition to the convergence efficiency and accuracy. When we applied the same approach as 

suggested in the referenced paper, we gained insights into SKF’s unique strengths and limitations of SKF when compared to other 

algorithms. The findings illustrate SKF’s unique capabilities in handling the exploration-exploitation trade-off. This study helps to set 

the foundation for creating more advanced algorithms and optimization strategies in the future. Future research will examine how 

enhancements to the SKF algorithm impact and enhance its search behavior. 
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I. INTRODUCTION

Metaheuristic algorithms are vital in solving complex 

optimization problems across various domains. Meta-

heuristic algorithms are known for being flexible, robust, and 

excellent at finding the best solutions to a wide range of issues 

without relying on specific problem structures or gradients 

[1]. These algorithms are generally simple to implement and 

require fewer parameters than traditional optimization 

methods [2]. Metaheuristics provides a better exploration-

exploitation trade-off, solution quality, and computing time 

[3]. They are beneficial for high-dimensional problems that 

conventional methods cannot resolve [4]. These 
characteristics make them more reliable and efficient than 

exact methods [3] and have led to their widespread use in 

engineering, finance, and computer science [5]. 

The list of state-of-the-art metaheuristic algorithms is long. 

Genetic Algorithm (GA) which was introduced by John 

Holand in the 1970s, Particle Swarm Optimization (PSO) 

introduced by James Kennedy and Russel Eberhart in the 

1990s, and Ant Colony Optimization (ACO) which was 

introduced by Marco Dorigo are widely adopted state-of-the-

art metaheuristic algorithms. Each has numerous variants and 

improvements. The categorization of metaheuristic 
algorithms differs from the way researchers look at it. 

Evolutionary Algorithms (EA) and Swarm Intelligence (SI) 

were among the earliest and most essential metaheuristic 

algorithms [6]. Both philosophies are rooted in natural 

phenomena. EAs are influenced by genetics and natural 

selection, whereas self-organized animals inspire SIs. GA 

falls under EAs. The GA imitates the natural-selection 

process. It selects the fittest individuals for reproduction to 

produce offspring for the next generation. In addition to GA, 

EA encompasses other categories, such as Evolutionary 

Strategies (ES) and Differential Evolution (DE). ES focuses 
on adapting strategy parameters, such as the mutation and 

crossover rates. Researchers primarily use ES to solve real-

valued optimization problems. DE uses vector differences to 

perturb the population vectors. The DE algorithm is also 

excellent for solving continuous optimization problems. PSO 
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and ACO belong to the SI. The social behavior of birds and 

fish inspires PSO. In PSO, the individuals in the swarm move 

towards the best solution by following the top-performing 

individuals in the swarm. ACO is based on the behavior of 

ants seeking a path between their colony and source of food. 

ACO is particularly useful for discrete optimization such as 

routing and scheduling. 

Interestingly, some sources provide more specific 

categorizations. For instance, [7] presented two more 

categories: physics-based, and human-based algorithms. 
Several other sources of inspiration have influenced the 

development of various algorithms. Researchers have 

developed many algorithms to search for the best solutions, 

each with its own unique traits and abilities [8], [9]. 

Biological, chemical, and physical phenomena inspire most 

metaheuristic algorithms. In addition to these natural sources 

of inspiration, estimation-based methods such as the Kalman 

filter and Finite Impulse Response (FIR) are highly inspiring 

[10]–[17]. These algorithms integrate empirical estimation 

techniques in their search strategies and demonstrate 

improved performance across various problem domains. 
Among all estimation-based optimization algorithms, the 

Simulated Kalman Filter (SKF) algorithm stands out for its 

unique approach to balancing exploration and exploitation 

using the Kalman filter approach. 

Exploration–exploitation balance is a fundamental concept 

in meta-heuristic algorithms, reflecting the trade-off between 

exploring the search space for new solutions and exploiting 

known reasonable solutions to find even better solutions 

[1],[18]. This aspect is essential in all optimization processes. 

To achieve this balance, metaheuristic algorithms employ 

various strategies. For instance, the Adaptive Balance 
Optimization Algorithm (ABOA) uses a global search phase 

and a local search phase controlled by a fixed parameter to 

balance exploration and exploitation throughout the iterative 

process [19]. Similarly, the Memetic Chaotic Gravitational 

Search Algorithm incorporates a quasi-Newton method to 

enhance the exploitation capabilities while maintaining 

exploration through chaotic mechanisms [20]. Different 

algorithms approach this balance uniquely. The Balance 

Adjustment based Chaotic Gravitational Search Algorithm 

(BA-CGSA) introduces a sine random function and balance 

mechanism to improve diversity and prevent premature 

convergence [21]. The Spherical Search Gravitational Search 
Algorithm (SSGSA) combines the effective exploration of 

Spherical Search with the exploitation capabilities of the 

Gravitational Search Algorithm [22]. These diverse 

approaches highlight the ongoing research efforts to optimize 

the exploration-exploitation balance in metaheuristic 

algorithms. 

Metaphors are of significant importance in the formation 

and description of metaheuristic algorithms. It helps in 

understanding and effectively conveying complex ideas. In 

the seminal work by Hayward and Engelbrecht, the authors 

highlighted a critical gap in the meta-heuristic research 
domain, specifically the under-explored area of search 

behavior characteristics [23]. In addressing this gap, the 

authors created a guide that outlines a straightforward 

approach for characterizing search behavior that researchers 

can universally apply to various types of meta-heuristics. This 

study aims to shed light on the dynamics of the SKF search 

process through a search behavior analysis based on this 

method. 

The importance of a detailed understanding of the search 

behavior in optimization algorithms cannot be overstated. 

This behavior ultimately determines an algorithm's efficiency, 

effectiveness, and applicability to various problems. The 

number of journal papers on metaheuristic research surged 

from 1994 to 2021, and the application areas were diverse 

[24]. Reference [25] highlighted the similarities between new 

algorithms (algorithms with high citation counts from 2000) 
and classical algorithms by identifying common features 

shared among different algorithms. He suggested that many 

new algorithms reassemble existing concepts from classical 

algorithms rather than introduce fundamentally new ideas. 

Considering this, our study aims to significantly advance the 

understanding of the Simulated Kalman Filter algorithm by 

providing a detailed analysis of its search behavior. Unlike 

previous works that primarily focused on performance 

metrics, this research delves into the mechanics of how SKF 

effectively balances exploration and exploitation. This novel 

perspective helps to identify specific strengths and potential 
areas for enhancement, positioning SKF as a versatile tool for 

various optimization problems. This study presents exciting 

possibilities for further algorithmic advancements and 

practical uses of SKF by thoroughly examining SKF’s search 

behavior in terms of its social dynamics and movement style. 

II. MATERIALS AND METHOD 

The SKF algorithm is an optimization approach inspired by 

the estimation abilities of the Kalman Filter [26]. Its purpose 
is to address global optimization problems by treating the 

state estimation problem as an optimization challenge. SKF 

believes that estimating the state of a dynamic system is 

similar to finding the best solution in a search space for 

optimization problems. SKF views the optimal solution as a 

time-independent estimate. The term “state” in SKF 

represents an agent’s location in the search space of the 

optimization problem. Similar to many metaheuristic 

algorithms, SKF employs a population of agents that 

continually adjust their positions in the search domain to 

approach the best possible solution. Each agent functions as 
its Kalman filter to estimate the optimal solution based on a 

simulated measurement process. 

A. Predict-Measure-Estimate Cycle 

The SKF algorithm employs three well-known steps in the 

Kalman filter operation for optimization. This process allows 

each agent to update its best estimate of the optimal solution 

based on simulated measurement. Fig. 1 illustrates the 

simplified principle of the SKF algorithm, where N refers to 

the total agents used. 
The SKF algorithm shown in Fig. 2 is crucial for visually 

understanding the flow and structure of the SKF algorithm. It 

provides a clear overview of how Kalman equations are 

adapted to the SKF algorithm. The equations are divided into 

three sets: the first one comprises the prediction. In the 

original SKF algorithm, the predicted value was the 

previously estimated value. The second one is the simulated 

measurement, which explores the search space. The simulated 

measurement mimics the measurement update in a standard 

Kalman filter using the best-so-far solution (Xtrue) as the 
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guide. The last one is for estimation. The estimate equations 

ensure that all agents are improving towards the optimal 

solution. This iterative process continued until the stopping 

condition was satisfied. 

 
Fig. 1  Simplified principle of Simulated Kalman Filter algorithm 

 

Fig. 2 shows the suggested SKF parameters. The results of 
the experiments in [27]–[29] show that altering the P, Q, and 

R parameters had no impact on SKF algorithm’s 

effectiveness. However, this study employed the original SKF 

algorithm for the analysis. 

 
Fig. 2  Flowchart of Simulated Kalman Filter algorithm 

III. RESULTS AND DISCUSSION 

In minimization problems, the global minimum is the best 

solution, whereas the local minimum is a lower point but not 

the absolute lowest point. When analyzing metaheuristics, 

researchers typically examine the quality of solutions 

produced. This evaluation involves assessing the solutions' 

proximity to the optimal solution or global minimum. 

A. Benchmark Objective Function 

Several studies have discussed the importance of 

developing comprehensive and challenging benchmarks for 
multi-objective optimization in the context of benchmark 

functions. These include the proposal of new benchmark 

functions based on zigzag functions [30], the development of 

a generative benchmarking approach for many-objective 

problems [31], and the introduction of mixed-integer 

benchmark problem suites [31]. These benchmarks aim to 

provide a diverse set of test problems with various features 

and difficulties in effectively evaluating the performance of 

the optimization algorithms. 

This study focuses on optimizing the Brown function [32]. 

The Brown function is a benchmark function used to evaluate 
global optimization algorithms. Because of its unique 

mathematical characteristics, it is especially valuable for 

testing an algorithm’s performance in steep and flat regions. 

In the experimental setup, we set the dimensions to 20 and 

used an SKF population size of 30. By using the same 

problem and experimental setup, researchers can compare the 

SKF search behavior with other algorithms studied in [23]. 

The Brown function is highly curved, continuous, 

differentiable, and scalable. It is also non-separable. This 

means that the terms in the function are interdependent, 

involving the products of different input variables. This key 

feature makes it challenging for optimization algorithms to 
determine the global minimum efficiently. Equation 1 defines 

the Brown function for xi between -1 and 4. 

 
(1) 

Fig. 3 shows the surface plot of the Brown function in 2-

dimension. The function is smooth, and small changes in the 

input result in small changes in the output. 

 
Fig. 3  Surface plot of Brown function 

 

The Brown function has a single global optimum (i.e., no 
local minimum). However, steep gradients and complex 

interactions between variables can make it appear locally 

multimodal. The function reaches its lowest value of 0 when 
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all input variables are 0, as shown in Fig. 4, marked by the 

red dot. 

The Brown function presents a more complex landscape 

than the Sphere function. Compared to the Rosenbrock 

function, the Brown function presents greater challenges 

owing to its strict penalty for deviations from the optimum 

path. By using the Brown function, we can determine how 

well a metaheuristic algorithm converges, the accuracy of its 

solutions, and the overall efficiency of the algorithm. 
 

 
Fig. 4  Contour plot of Brown function in log scale 

 

To better visualize the Brown function, we displayed its 

surface and contour on a graph. We specifically focused on 

the range [-1,1], as shown in Fig. 5. The 3D surface plot shows 
the smooth surface of the Brown function with a valley and 

peaks, indicating regions of low and high fitness values. 

Closer contour lines at the sides indicate steeper gradients, 

whereas widely spaced lines represent flatter regions at the 

center of the plot. 
 

 

 
Fig. 5  Surface and contour plot of Brown function in [-1,1] 

B. Search Behavior in SKF 

Exploration and exploitation are two well-known search 

behaviors in the field of optimization. Achieving the right 

balance is critical for the performance of metaheuristic 

algorithms. This balance affects the capability of the 

algorithm to find global optima, steer clear from local optima, 
and converge efficiently. Many approaches attempt to switch 

from exploration to exploitation as the quest progresses [33]. 

Metaheuristic algorithms depend on exploration behavior to 

discover promising regions within a search space. Exploration 

typically occurs at the beginning of the search process. 

Exploration is necessary; however, excessive exploration can 

be inefficient. Algorithms may overlook promising solutions 

if they require too much time to explore. Exploitation 

behavior allows metaheuristic algorithms to intensify their 

search for the best solutions. This behavior helps the 

algorithms converge on the optimal solution. However, 

excessive exploitation can lead to the algorithm to quickly 
becoming trapped at a sub-optimal location.  

In the SKF, the search space is initially populated 

randomly. This injects a high level of exploration at the 

beginning. The SKF algorithm continues with the current 

solution during the prediction step. This allows for further 

exploration of promising solutions. The measurement 

equation includes a sine function, helping the SKF agents 

explore, guided by their current best solution. Adding a 

random term to the sine function renders the measurement 

process more stochastic and can influence the search. The 

Kalman estimation equations play a vital role in exploitation. 
Agents in SKF progressively refine their estimates of the 

optimum solution based on their simulated measurement 

values and previous estimates. Initially, the Kalman gain was 

set to favor exploration, giving more weight to new 

information from the simulated measurements. As SKF 

agents gather more confidence in their estimates, the search 

steers towards a more precise solution. These two factors 

cause a gradual shift from exploration to exploitation, as the 

search continues. Reference [34] offers a tutorial on the 

population-based SKF algorithm. This includes a numerical 

example, which makes it easier to understand. 
Various studies have demonstrated that incorporating 

adaptive mechanisms, hybrid approaches, and novel search 

strategies can significantly enhance the exploration-

exploitation balance, improving performance across various 

optimization problems [35],[36]. Researchers have made 

efforts to enhance the performance of SKF algorithms. A brief 

review of the SKF algorithm has identified approximately 16 

fundamental improvements [37]. Table 1 lists the types of 

modifications applied to the SKF algorithm and the specific 

mechanism employed. Most of the improvements are made to 

increase the exploration capability of the SKF algorithm to 

avoid premature convergence. Researchers have enhanced the 
SKF algorithm in the prediction, measurement, and 

estimation steps.  

References [38]-[40] use opposition-based learning as the 

prediction operator. This mechanism helps the algorithm 

explore a wider area by considering both the predicted and 

opposite solutions. Integrating a second algorithm can help 

the SKF algorithm explore a wider range of search areas. This 

second algorithm was used to predict the solutions because 

the original SKF algorithm lacked a prediction mechanism. 

PSO and Gravitational Search Algorithm (GSA) are two 

algorithms that have been tested as prediction operators for 
SKF algorithms [41],[42]. In [43]–[45], different approaches 

were discussed for implementing the algorithms as prediction 

operators. Reference [46] suggested using the Sine Cosine 

Algorithm (SCA) to explore and exploit the simulated 

measurement, which was proven effective. Reference [47] 
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suggests considering the opposite solution after the estimation 

step to enhance the exploration of the SKF algorithm.  

Researchers have observed that this mechanism prevents 

the algorithm from prematurely converging to a local 

optimum by utilizing the current optimum solution to generate 

the opposite population. Another way to improve exploration 

behavior is by introducing a mutation operator. In [48], a 

mutation operator was introduced after the estimation step. A 

mutated solution was used to replace one of the solutions. 

Depending on the fitness value, the mutated solution either 
replaces the best-so-far solution, leads the search in the next 

iteration, or replaces any solutions. Improving exploration 

behavior is not the only way to enhance the performance of 

an algorithm. In [49], the authors enhanced the SKF 

algorithm’s exploitability by adding an exponential term to 

the estimation equation. This compelled the algorithm to take 

larger steps in the early optimization stages and proved 

effective. 

Finally, the SKF algorithm can be improved by changing 

its update mechanism. In the original SKF algorithm, agents 

update their solution estimation after completing all agents' 
fitness evaluation and prediction measurement cycles. 

However, [50] showed that allowing an SKF agent to update 

its estimation separately with the entire population resulted in 

better performance. Therefore, the update mechanism in SKF 

shows promises for improving its ability to explore and 

exploit resources. References [51]–[53] researched further on 

adapting the update mechanism by switching between 

synchronous and asynchronous updates to further improve 

performance. Based on these findings, the impact of the 

iteration strategy on SKF algorithm is influenced by the 

presence of memory. 

TABLE I 

IMPROVEMENTS TO THE EXPLORATION AND EXPLOITATION CAPABILITY OF 

THE SKF ALGORITHM 

Ref. Type of 

Modification 

Specific 

Mechanism 

Behavior 

Improved 

[38]- 

[40] 

Prediction 

operator 

Opposition-

based 
learning 

Exploration 

[41]- 
[45] 

Prediction 
operator 

Hybrid with 
another 
algorithm 

Exploration 

[46] Measurement 
method 

Hybrid with 
another 
algorithm 

Exploration and 
exploitation 

[47] Estimate equation Opposition-
based 
learning 

Exploration 

[48] Estimate equation Mutation 
operator 

Exploration  

[49] Estimate equation Exponential 
term 

Exploitation 

[50]-

[53] 

Update 

mechanism 

Adaptive 

switching 

Exploration and 

exploitation 

 

In summary, SKF’s search behavior is driven primarily by 
it predict-measure-estimate cycle. Each step uniquely 

contributes to the algorithm efficiency: 

1) Predict step: This step allows each agent to project its 

current state into the future. This projection introduces an 

opportunity for exploration, considering that future states can 

lead to an optimal solution. Variants using opposition-based 

learning and hybrid approaches during the prediction step 

help explore a wider area, facilitating the exploration of a 

broader region of the search domain. These approaches 

significantly enhance the exploration capability of SKF, thus 

reducing the risk of premature convergence. 

2) Measure step: Each agent’s prediction was refined 

using a simulated measurement process in the measurement 

step. A balance between exploring new areas and exploiting 

existing knowledge is crucial. Adapting a suitable algorithm 
that can balance exploration and exploitation in this step may 

improve the accuracy of the SKF algorithm. 

3) Estimate step: The estimating step involves updating 

the agent’s position based on simulated measurements. 

Dynamic adjustment during this step aids in further 

exploration or exploitation throughout the search process. 

Variants using opposition-based learning and mutation 

enhance the SKF algorithm's ability to escape local optima by 

exploring more regions containing better solutions. One might 

also decide to refine good solutions effectively to avoid being 

trapped in local optima. 

C. Visualizing SKF Search Behavior 

In addition to the solution quality, a thorough analysis of 

meta-heuristic behavior should be conducted so that better 

improvements can be made to the algorithms [54]. The SKF’s 

exploration and exploitation behavior in solving the unimodal 

Brown function is reflected in the convergence curve in Fig. 

6. The convergence curve depicts how the SKF’s estimate 

evolves over 500 iterations. The y-axis measures the fitness 

value of the best solution so far (Xtrue). In the initial stages, 
the SKF prioritizes exploration to successfully traverse the 

search space to locate the region containing the global 

minimum. This is evident from the steep decrease in fitness 

values found during the first few iterations.  Because SKF 

focuses on a promising region, the curve exhibits a gradual 

descent. 

 

 
Fig. 6  Convergence curve for Simulated Kalman Filter 

 

This section demonstrates the visualization of social 

dynamics and movement style in SKF to understand the 

algorithm's search behavior characteristics further. 

 

132



1)   Social Dynamics:  

Social dynamics are used to understand how information is 

shared between individuals in a population [23]. Reference 

[55] suggests that incorporating problem-specific dynamics 
into metaheuristics could improve performance in certain 

scenarios. Two characteristics can be observed under social 

dynamics: improvement frequency and population turnover. 

SKF has a fixed population size.  Therefore, the improvement 

frequency matrix of 30 individuals × 500 iterations will 

contain a value of ‘1’ if the individual’s fitness improves at 

the specific iteration or a value of ‘0’ if otherwise. As all 

agents in the SKF algorithm make their own estimation of the 

optimum solution and continue to the next iteration, their 

improvement statuses are logged consistently after the 

estimation step. The colored rectangles in Fig. 7 are plotted 
with iterations along the y-axis and SKF agents on the x-axis. 

Each blue-colored rectangle for each iteration represents 

where an individual improves fitness. From Fig. 7, we can see 

the freshness of information in SKF agents throughout the 500 

iterations from the existence of the blue rectangles for all 

agents sporadically from the start until the end. There is no 

large uncolored area that can be seen, as all agents continue 

to improve their own estimation and share the information 

with the whole population in every iteration. The solution 

with the highest fitness score is identified, leading the search 

for the subsequent iteration. This cycle continued until the 

stopping conditions were satisfied. Comparing this finding 
with the findings by Hayward and Engelbrect in [23], we can 

see the similarity in the information freshness between the 

SKF and DE algorithms. The population turnover figure is 

interpreted as a heatmap in Fig. 7, plotting the number of 

individuals that changed positions in each iteration.  

 
Fig. 7 Basic visualization of improvement frequency combined with 

visualization of population turnover (with a 1% threshold) for the Simulated 

Kalman Filter algorithm.  

 

The bluer the color, the fewer the number of individuals 

changing positions, and inversely, the redder the color, the 

larger the number of individuals changing positions at every 

iteration. In this case, the same threshold as in [23] was used 

to account for a specific position change size. Only position 

changes that were more than 1% of the space size problem 

were logged. In the case of SKF, all agents change positions 

at every iteration except for the best so-far solution. By 

eliminating insignificant position changes, the minimum 

number of agents changing positions in an iteration is 18. This 

differs from the DE algorithm because less than half of the 

DE population changes positions in each iteration. Except for 

GA, which has a persistent population turnover of around 

25%, SKF, like other metaheuristics, has a reduced number of 

individuals, making a turnover of significant size towards the 

end of the search due to exploitation kicks in. Based on the 

social dynamics of the SKF algorithm, we can see that the 

amount of good information is fresh and well-distributed 
among all individuals throughout the population. From the 

improvement frequency and population turnover, we can see 

that the number of movements in the SKF algorithm is highly 

related to the number of improvements made. 

A bar chart showing each individual's total number of 

improvements is illustrated in Fig. 8 to provide a quick 

comparison of which individuals improved the most. Based 

on the figure, the spread across the number of individuals 

shows uniform behavior, meaning that all agents are equally 

responsible for searching, and no elitist strategy is employed. 

 

 
Fig. 8  Quick comparison of the total number of improvements for each 

individual in the Simulated Kalman Filter. 

 

 
Fig. 9 Number of agents improving for each iteration in the Simulated 

Kalman Filter. 

 

Out of the 15000 position changes (30 agents × 500 

iterations), approximately 6749 movements resulted in 

locations with better fitness values. On average, 

approximately 45% of the movement by each SKF agent 
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exploits near the best solution, whereas the remaining 55% 

explores the search space. The improvement frequency status 

over the iterations fluctuates around 13 (median value), as 

illustrated in Fig. 9. Over 500 iterations, most of the time, 

around 12-16 agents (approximately 40%–53%) make 

positive improvements in every iteration. This high 

percentage indicates how well the algorithm engages the 

agents involved in the search process for a better solution. 

In summary, the improvement frequency and population 

turnover in metaheuristics are essential factors in balancing 
exploration and exploitation, ultimately affecting their 

capability to escape local optima and efficiently reach optimal 

solution [56]. 

2)   Movement Style:  

Understanding movement style helps us see how 
individuals’ movements affect algorithm improvement [23]. 

Metaheuristic algorithms employ various movement styles to 

navigate around the search space effectively. This diversity in 

movement styles contributes to the algorithm’s performance 

[57]. We can view this in two ways: the size of the steps taken 

and the quality of the steps taken. The average change in the 

step size for each iteration is logged to measure the sizes of 

the steps taken. Fig. 10 shows the shape of the footprint of the 

SKF algorithm. No normalization was performed in this case. 

The higher the peaks, the larger the number of steps taken. 

Looking at the SKF step footprint pattern, we can see a sharp 

decrease in step size at the beginning of the iteration. This 
pattern is similar to that of the initial PSO pattern. However, 

after that, we can see that the step sizes stabilize, with some 

minor fluctuations. This indicates that SKF agents make more 

minor adjustments as they refine their estimation of the 

optimal solution. The large spikes in the earlier iterations 

suggest that the algorithm makes significant changes based on 

exploring the simulated measurements. 

 

 
Fig. 10  Step footprint visualization for the Simulated Kalman Filter.  

 

Fig. 11 shows the quality of the step obtained through the 

step fitness figure. The change in fitness values before and 

after an estimate for each iteration was logged regardless of 

positive or negative changes. Then, the average fitness 

changes were used for visualization. We used a scatter plot on 

a log scale following [2]. The distribution of large to minor 

data points is essential when evaluating the fitness value 

pattern. In contrast to Fig. 10, the step fitness plot shows that 

the most significant improvement occurred. The scatter plot 

shows a large change in fitness at earlier iterations. By 

comparing Fig. 10 and 11, we can see the influence of the size 

step on its quality. With an increasing number of iterations, 

the change in fitness decreases. This shows that SKF agents 

converge towards a stable estimate around the optimal 

solution. The occasional significant shift in fitness during the 

second half of the search indicates the SKF algorithm’s ability 

to continue exploring. This behavior is a unique characteristic 

of SKF and is not observed in DE, ES, or PSO. 
 

 
Fig. 11  Step fitness visualization for the Simulated Kalman Filter.  

 

Interestingly, initialization methods can significantly affect 

step sizes and quality. The diagonal linear uniform 

initialization (DLU) technique improves convergence speed 
and solution accuracy by adopting subspace sampling instead 

of the whole space [58]. This update mechanism of the 

algorithm enhances both precision and convergence rate. 

IV. CONCLUSION 

In conclusion, it is essential to understand the search 

behavior to improve optimization research and practice. With 

a complete understanding of the SKF’s operations and 
behavior, we can hone the algorithm to solve problems more 

effectively and use it in different fields. Our study proved the 

unique search behavior of the SKF algorithm through its 

social dynamics and movement style. Our research confirms 

that the SKF algorithm effectively balances exploration and 

exploitation even with high convergence. Future research 

could focus on mapping the behaviors of improved SKF 

algorithms using the same measure to systematically assess 

which changes have the most significant impact on the 

algorithm's effectiveness. In addition to investigating versions 

of SKF algorithms, researchers can compare them with other 

popular methods for better positioning.  
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