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An adequate sustainable production inventory model is
expected to represent complex real-life cases involving fuel,

emissions, and electricity costs as well as multi-materials,
quality degradation, and probabilistic demand. Therefore,
this study was conducted to develop this kind of model to
determine the number of raw material shipments (m;),
production cycle time (T), and the number of finished goods
delivered (n) to maximize the Expected Total Profit (ETP). The
proposed model is based on a bibliometric literature analysis
of the sustainable production-inventory problem which is
visualized using the VOSviewer. Moreover, a sophisticated
Harris-Hawks Optimization (HHO) algorithm was proposed to
solve the problems identified in the sustainable production
inventory model optimization. It is also important to note
that three numerical cases were provided to evaluate the
performance of the algorithm. The findings showed that the
suggested HHO method outperforms the Genetic Algorithm
(GA) and Particle Swarm Optimization (PSO) in maximizing
ETP and this means it is better for ETP optimization. It was
also discovered from the sensitivity analysis that an increase
in the rate of quality degradation (k) led to a reduction in
both the ETP and T.
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1. INTRODUCTION

Sustainability is currently an important
global issue and has promotes stakeholders
to focus on increasing the economic,
environmental, and social dimensions (Negri
et al.,, 2021). This requires implementing
sustainable practices in industries to
significantly reduce emissions, conserve
resources (Mashud et al., 2022; Taghikhah
et al., 2019), and solve social problems. The
concept is being applied widely to supply
chain activities and has been proven to be
effective in improving company
performance (Ho et al., 2022; Shekarian et
al., 2022; Wang et al., 2019). Meanwhile, it
is important to note that procurement,
production, and distribution decisions in
supply chain systems can affect supply chain
performance (Lu et al., 2020; Maulana et al.,
2020).

This is the reason scholars have
attempted to integrate inventory decisions
into the supplier and manufacturing levels
(Utama et al., 2022a; Utama et al., 2022b),
internal manufacturing (Liu et al., 2021), and
manufacturing-customer relationship. One
of the problems identified in integrated
inventory is the  production and
procurement system which is popularly
known as the Production Inventory model
(Goyal & Deshmukh, 1992; Park, 1983). This
led to the conduct of several relevant
studies to solve this problem through the
optimization of only the economic
dimension. Therefore, there is a need to
investigate the environmental and social
dimensions.

Different forms of sustainable production
inventory models have been proposed with
most of the previous studies discovered to
have focused on minimizing one indicator of
the environmental aspect such as electricity
costs (Gautam et al., 2022), fuel
consumption (Sarkar et al., 2017; Utama et
al., 2022a; Wangsa & Wee, 2018), and
emissions (Jaber et al., 2013; Jauhari et al.,
2022; Ullah et al., 2021).

Others also attempted to combine two
indicators such as fuel consumption and
emissions in developing a new model
(Wangsa, 2017; Wangsa et al., 2020). It was
discovered that only Jauhari (2022)
considered fuel, emissions, and electricity
costs simultaneously. Moreover, it is also
important to consider quality degradation in
this model due to its existence in several
industries including pharmaceutical (Silva-
Aravena et al., 2020), food (lbrahim et al.,
2020; Lee et al., 2015), and agro-industry
(Liu et al., 2018).

Most previous studies assumed that a
single finished product requires a single raw
material (SRM) (Bhattacharjee & Sen, 2022).
This means their models cannot be applied
to products requiring multiple raw materials
(MRM). The studies also assumed that
product demand is deterministic (Fiorotto et
al., 2021) without any consideration for
stochastic demand.

Advanced metaheuristic procedures have
been proposed to optimize production
inventory models based on the rapid
advances in computer technology. These
include Particle Swarm Optimization (PSO)
(Taleizadeh et al., 2010) and Genetic
Algorithms (GA) (Sadeghi et al., 2011), as
well as the integration of the two algorithms
(Sadeghi et al., 2013).

However, no study used the Harris-Hawks
Optimization (HHO) algorithm to optimize
the sustainable production inventory model
problem. It was discovered that Heidari et
al. (2019) only proposed the HHO algorithm
by mimicking Harris Hawks’ herd behavior in
hunting prey.

The algorithm was reported to have good
performance in optimizing scheduling
(Utama & Widodo, 2021), forecasting
(Chaudhuri & Alkan, 2022), energy (Dev et
al., 2022), and engineering field (Shehab et
al., 2022). This means it has the potential to
solve the problems associated with the
sustainable production inventory model.

Only a few studies considered fuel,
emissions, and electricity cost indicators
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simultaneously in a sustainable production
inventory model. It was discovered that
none considered the multi-material, quality
degradation, and probabilistic demand
indicators and this is the primary motivation
for this study.

The gaps in sustainable production
inventory model research are also evident in
the bibliometric literature analysis
presented in section 2. Furthermore, HHO
advanced algorithm was reported to have
the potential to solve the problem of a
sustainable production inventory model but
it has not been applied for this purpose.

This study also proposes to apply the
HHO algorithm in resolving problems
associated with the model. Therefore, the
Research Goals (RG) include (RG 1)
developing a sustainable  production
inventory model that considers multi-
materials, quality = degradation, and
probabilistic demands and (RG 2) applying
the HHO algorithm to optimize the problems
in the model.

This means the practical contributions
involved include:

(i) the development of a new model of
sustainable production inventory by
considering  multi-materials, quality
degradation, and probabilistic demands;
and

(i1) the application of the HHO algorithm as
an optimization tool to solve the
problems of sustainable production
inventory model.

The structure of this paper is below:
Section 2 provides a literature review and
bibliometric analysis of the sustainable
production inventory model. Section 3
describes the system's characteristics,
assumptions, notations, and the proposed
model on the sustainable production
inventory model. The proposed algorithm
for optimizing the sustainable production
inventory model is presented in Section 4.
Section 5 provides study data and
procedures. Section 6 presents results and

discussions. Finally, this article concludes
with conclusions.

2. LITERATURE REVIEW AND BIBLIOMETRIC
ANALYSIS
2.1. Bibliometric Analysis

This section presents the bibliometric
problem of the sustainable production
inventory model. The keywords used for this
search are "Sustainable" and "Production"
or "Inventory" and "Model". Fifty papers
were collected from the Scopus database
published in 2013-2022.

Figure 1 presents the development of
article  publications related to the
sustainable production inventory model.
This result shows that this topic started to
be published in 2013. This topic increased
dramatically from 2020-2022, and 17 papers
were published in 2022.

Network Visualization of sustainable
production inventory keywords based on
VOSviewer is depicted in Figure 2. This
result shows that 6 clusters were identified
based on co-occurrence analysis. The main
popularly used keywords are presented in
cluster 1 (red color).

In this cluster, the main keywords are
sustainable inventory model and its
derivatives, such as sustainable economic
production quantity (EPQ), controllable
carbon emission, deteriorating, green
technology, and shortage.

The second cluster (green color) includes
a sustainable integrated inventory model,
sustainable supply chain, controllable lead
time, sustainable location, defective items,
and stock levels that focus on the supply
chain network.

The third cluster (blue) categorizes terms
related to the economic order quantity,
green inventory model, supply lead time
uncertainty, and sustainable order quantity
inventory model that focuses on the model
for order quantity.

The fourth cluster in yellow is a group of
sustainable production inventory model
problems.
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Figure 2. Network Visualization of sustainable production inventory keyword.

In this cluster, some related derivative
keywords are investment, carbon emission,

collaborative  investment, preservation
technology, and production inventory
model. This cluster shows that the

consideration of quality degradation, multi-
raw materials, and stochastic demand are
not discussed in previous studies. The fifth
cluster (purple color) shows the cluster
group of sustainable supply chain inventory
models with qualities such as imperfect
quality, perishable products, maintenance,
and unit quantity discount. The last cluster
in light blue is the green inventory
management cluster with derivatives such
as carbon emission and trade policy.

Finally, Figure 3 analyzes co-occurrence
by all keywords with an overlay
visualization. The analysis results show that
the most used keywords between 2021 and
2022 correspond to the green and yellow

colors: carbon emission, sustainable
production inventory model, defective
items, and trade policy.
2.2. Content Analysis and Gaps

Based on the bibliometric analysis,
Content Analysis, and Gaps model
sustainable  production inventory s

explained in this section. Previous studies
that have been conducted concerning the
problems of the sustainable production
inventory model are reviewed with a focus
on the integration of production and
inventory policies. It is pertinent to note
that the procurement and production
subsystems are interconnected in making
decisions on raw material procurement and
finished goods production. The model was
initially proposed by Goyal (1977) and
GoyalDeshmukh (1992) to minimize total
costs.
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Figure 3. Analysis of representative terms on the subject over time.

Sustainability requires an integrated and
collaborative approach in supply chain
networks. It is also important to note that
sustainable inventory management is one
aspect of sustainable supply chain
management (Becerra et al., 2021) which is
critical and recognized as corporate social
and environmental responsibility (Pattnaik
et al., 2021). The previous studies that have
been conducted on sustainable production
inventory models are summarized in Table
1. It was discovered that most of these
studies focused on the complexities of
Single Raw Material (SRM), Single Stage
Production (SSP), and Single Product (SP).

This means attention was generally on
the development of economic and
environmental models  consisting  of
emission cost and fuel usage without
consideration for the quality degradation in
raw materials. It was also discovered that
they mostly consider customer demand
while deterministic and heuristic procedures
are the popular methods applied to solve
the problem.

There is no present study conducted on
the sustainable production inventory model
that considers multiple materials, quality
degradation, and probabilistic demand.
Therefore, this study was conducted to fill

this gap by proposing a new model that
considers these indicators. The HHO
algorithm  which is classified as a
metaheuristic procedure was also proposed
to optimize the problems associated with
the sustainable production inventory model.

3. SYSTEM CHARACTERISTICS,
ASSUMPTIONS, NOTATIONS, AND
PROPOSED MODEL

3.1. System Characteristics

The proposed model was designed to
address the shortcomings of earlier models.
It can represent complex real cases due to
the inclusion of the costs for fuel, emissions,
electricity, multi-materials, quality
degradation, and probabilistic demand in
the model. Moreover, Figure 4 shows the
sustainable production inventory system
which  includes the raw  material
procurement, production, and distribution
activities. The figure shows the process
through which products are produced to
meet the stochastic demands of buyers (D)
using several raw materials (j) ordered from
suppliers. It is pertinent to state the
producers are required to order raw
materials from suppliers m times for each
raw material j (m;).
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Table 1. Literature Review on the sustainable production inventory model

Complexity-Based Classification Fuel Tax Electricity Demand Quality Optimization
Research SRM MRM SSP MSP SP MP cost emission cost Characteristic :egradatlo Tools
(Fiorotto et al., 2021) - v \ - \ - - - - Deterministic - Exact
(Fangetal., 2016) - v v - v - - - - Deterministic - Heuristic
(Budiman & Rau, 2021) - v - v - v - - - Stochastic - Heuristic
(Omar & Zulkipli, 2018) v - v - v - - - - Deterministic - Exact
(Karabag & Tan, 2019) v - v - v - - - - Deterministic - Metaheuristic
(Khara et al., 2020) ' - V' - - ' - - - Deterministic v Heuristic
(Shafiee et al., 2021) - v v - - v - v - Deterministic v Hybrid
(Jauharietal., 2022) \' - v - v - v - \' Stochastic - Heuristic
(Jauhari, 2022) v - - v v - v - v Stochastic - Heuristic
(Mashud et al., 2022) v - v - v - - - - Deterministic ' Heuristic
(Wangsa et al., 2020) \' - Vv - v - v - - Stochastic - Heuristic
(Gautam et al., 2022) v - ' - ' - - - v Deterministic - Heuristic
(Bhattacharjee & Sen, 2022) v - ' - \ - v - ' Deterministic v Heuristic
(Mishra et al., 2020) v - v - v - v v - Deterministic v Heuristic
(Mashud et al., 2022) v - v - v - v v - Deterministic v Heuristic
(De-la-Cruz-Marquez et al., 2021) \' - v - v - - v - Stochastic - Heuristic
This research (2022) - \' v - v - \' ' Vv Stochastic v Metaheuristic

Where: Single Raw Material (SRM), Multi Raw Material (MRM), Single Stage Production (SSP), Multi-Stage Production (MSP), Single Product (SP),
Multi Product (MP)
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Figure 4. Characteristics of the sustainable production inventory model system.

The system has different requirements
for each raw material to produce a finished
product. This is indicated by the fact that
each raw material j has a requirement
coefficient 4 (4;) to produce a food product.
The system also considers the degradation
of the quality of the raw materials over time
to ensure appropriate optimization of those
in the warehouse inventory.

Moreover, the system requires that the
producers determine the production cycle
(T), the finished goods to be sent to buyers
in n times as well as each raw material to be
ordered m times (m;). The goods are
produced at a production rate (P) which is
more than the buyer demand (D).

3.2. Assumptions and Notations

The assumptions made in developing the
mathematical models to represent the
problem are stated as follows:

a) Demand for finished goods s
probabilistic based on the normal
distribution.

b) The finished good production rate
exceeds the product demand rate (P >
D). This is to ensure all the demands are

met.
c) Raw material j has the highest quality
(Qmaxj) when it arrives in the

warehouse for manufacturing.

d) Each raw material is adequate to meet
production requirements. None of the
raw materials is also expected to expire
during the planning period because the
producers have complete control over
the procurement process.

e) There is no shortage of raw materials
because suppliers can meet demands.

f) The buyer's request for a shortage of
finished goods is permitted.

g) The quantity of raw materials ordered is
not limited by vehicle capacity.

h) Vehicle capacity does not limit the
number of finished good shipments.

The notation used in this model includes:
Index

j : index of raw materials j = 1 ... N,

Parameters

P : production rate

D : finished good demand

N, : number of raw materials

A : the requirement of a finished
good on j raw materials

qo; : order quantity of raw materials j

q1 : finished good delivery quantity

k; : rate of degradation quality of the

J-th raw materials per unit of time

Qmaxj maximum quality on j-th raw

materials
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: minimum quality on the j-th raw
materials
: quality remaining of the j-th raw
materials in period t
: quality degradation of the jth raw
material until period t
: duration j-th raw materials can be
stored
: loss costs quality of the j-th raw
materials
: loss sales cost of finished goods
: finished goods selling price
: purchasing cost of the j-th raw
materials
: processing cost of the finished
good
ordering cost of the j-th raw
materials
: transportation costs for the j-th
raw material
: finished good transportation costs
: fixed cost of transportation on the
J-th raw material
: fixed costs of transportation of
finished goods
: distance of the j-th raw material
supplier
: distance between the producer
and the buyer
: kilometers per litre for the j-th
raw material procurement unload
: kilometers per litre for the j-th
raw material procurement full load
: kilometers per litre of unloading
for delivery of finished goods
kilometers per litre for the
shipment of finished goods with a
full load
: fuel cost for the shipment of the j-
th raw material
fuel cost used to deliver the
finished good
: emissions for 1 litre of fuel in the
J-th raw material shipment
: emissions for 1 litre of fuel at
product delivery

Pm

PSm
Plm

pO;

&t
Gj

Sr,j

Sp

: emissions for the production of
each unit of product
: emissions for production setups

emissions for finished goods
inventory
: emissions for the j-th raw material
inventory

: emission tax per kg

: fixed social cost of procurement
the j-th raw material per horizon

: social cost of procurement the j-th

raw material per order

social costs of delivering the
finished good
: social fixed costs of manufacturing
: the social cost of manufacturing
once produced
: social costs of inventory finished
goods
: social cost of the j-th raw material

inventory

energy required
production setup
: energy required to produce each
unit
: energy required for storage of the
finished good
: energy required for the inventory
of the j-th raw material
: energy tariff per kWh
: safety factor
: standard deviation demands
: safety stock
. estimated cost of loss sales of
finished goods
: probability density function of the
normal distribution
: cumulative distribution function of
the normal distribution
: setup costs for processing the
finished good
: inventory costs for the j-th raw

for the

materials

: finished good inventory costs

: average inventory for the j-th raw
materials

: average finished good inventory
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L; : total costs due to degradation of
the quality of the j-th raw materials

TCo;  :total cost of the j-th raw materials
procurement system

ETC, :expected total cost of the finished
good

ETP expected total profit in the
sustainable production Inventory
system

Decision Variable

m; : frequency shipment the j-th raw
materials

T : production cycle time

n : delivery frequency of finished
goods

3.3. The Proposed Model of Sustainable
Production Inventory

The proposed model for sustainable
production inventory problems associated
with  multi-raw  materials and quality
degradation is discussed in this section. It is
important to note that the quality
degradation of each raw material j was used
to calculate the costs incurred by the
company due to the reduction in quality.
Therefore, a kinetic model function was
used in this study to formulate the
degradation of raw material quality in the
inventory system (Rong et al., 2011). It was
assumed that the entire supply of raw
materials j (qoj) was used for only

production purposes (P) during the
procurement cycle (T,/m;). It was also
assumed at the beginning of the filling cycle
that the raw material quality level j is the
maximum level (Qmaxj)- Moreover, the

degradation rate formula at time t or Q(t) is
shown in Equation (1) and the quality loss
for raw material j for production at time t is
presented in Equation (2).

The raw material quality degradation was
estimated by determining the maximum
quality of j-th (Qmax].), achieving minimum
quality level (Qminj), and the j-th maximum
duration (rmaxj). Furthermore, Equation (3)

indicates the model of the decline rate of

raw material j quality in each period t. The
linear relationship between the quality
degradation j from period 0 (Qmaxj) totis

also modeled in Equation (4). The total cost
quality reduction j (Lj(mj,T)) during period
t is indicated in Equation (5).

Figure 5 shows the system profile of the
sustainable production inventory model
designed for the problems investigated. It
was discovered that there are two levels of
inventory including the finished products
and raw materials j. For finished products,
the raw materials are processed in the
amount of AjP with a production time of T,
to meet the demand of buyers (D). Where
Aj indicates the j-th raw material needed to
have a finished product. Moreover, the
producers are required to ensure the
production rate (P) is greater than demand
(D) and the rate of raw material j needed
for production is A;P. It is important to note
that the proposed model estimates the
number of finished products during the
production cycle (T) to meet demand based
on q; = DT with T, = DT /P. The finished
products are also poured in batches (q;)
and sent to sales with the delivery frequency
of n times. This makes it possible to
estimate the cycle of finished product
orders by sales using gq,/D. For the raw
material inventory, producers obtain raw

materials from suppliers with size qo; and
procurement cycles %. These materials are
subsequently sent to the producers with a
delivery frequency of m; times.

The demand for finished products (D) in
this problem is stochastic based on the
normal distribution and this means it can be
estimated using the mean D(T) and the
standard deviation o+/T during the period T.
Moreover, the average inventory was
estimated by calculating the average T-
period inventory added with the safety stock
(Jauhari et al., 2021; Jauhari et al., 2011).
The safety stock formula in inventory is
indicated in Equation (6). It is also possible
for finished products to experience a loss of
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sales due to stochastic demand. These lost
sales are estimated in period T using
Equations (7) and (8) while the inventory for
the finished products (I;) and raw materials
j (10].) is modelled in Equations (9) and (10).

The proposed transportation model
assumes that the vehicle departs to pick up
raw materials with an empty load.
Therefore, the model to procure raw
materials from suppliers is presented in
Equation (11) and the model to ship finished
products is formulated in Equation (12). The
costs related to raw material management
are calculated in Equation (13) while the
expected total cost of the finished product
system (TC,(n,T)) is presented in Equation
(14). Moreover, the formula to determine
the total revenue (TR(n, T)) in the system is
indicated in Equation (15).

The Mixed-Integer Nonlinear
Programming equation presented in
Equation (16) is designed to predict the total
revenue of the system under study with the
constraints identified in Equations (17)-(19).

The Expected Total Profit (ETP) of the
model is shown in Equation (16) with certain
constraints required to be satisfied during
optimization. First, the production level
needs to meet all the demands in Equation
(17). Second, the production cycle
requirement in Equation (18) needs to be
greater than 0. Third, the constraint in
Equation (19) ensures the delivery
frequency of raw materials j and finished
products need to be an integer that is
greater than 1. It is important to note that
profit maximization was conducted through
the simultaneous determination of the
optimal decision variables including m;, n,
and T.

Qj(t) = Qmaxj - kjt (1)
AQj(t) = Qmaxj - Qj(t) (2)
k] _ Qma:j_Q?‘ninj (3)

J

AQ;(t) = kjt (4)
A;DT

Li(m;, T) = coss, mj;jp I(WAQ,-(Q dt(s)

SS = KoT (6)

EL = oNTY(K) (7)

Y(K) = (s(K) — K[1 = FK(K)]) (8)

I =%(§(2—n)+(n—1))+ KoVT (9)

A;D*T
] ij'le

Iy (10)

d
Tpi:(ap+§p)+Fip*(Bp+p*st)+

dp DT
KPLp_KPLp* n (Bp + pp * St) (11)
dr]-
Trj = (arj + grj) + KPLT; (Brj + pj * 8t) +

dr]- /1]'DT
KPLT‘j—KPLT‘*j m;

By + Py * £0) (12)

Ny
TCO(mj, T) = Zj=1 COjAjD + CJ + (Aoj +

m
Trj)?’+ (Ho, + Girj + €0j % Cc + p0;

ljDT

[V 40,0 dt | (13)

mjA;P
17
Et)IOj + Clossj T

ETC,(n,T) = (c1 + €y * Cc + pm * €) *

S+Gmp tEs*CetpSy *€
D + gf +( mpTEs e m t)
p T T

(gmi + €; * Ce + pim * &t + Hl)ll +
EL*Clossp

Tpi*n

+

(14)
TR(n,T) = cgq1eD (15)

ETP(mj,T,n) = TR(n,T) — (TCo(m;, T) +

TCy(n,T)) (16)
P >D; (17)
T>0; (18)

m;, n > 1; and Integer
(19)
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Figure 5. System profile of the sustainable production inventory model.
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4. PROPOSED ALGORITHM

An HHO algorithm was proposed to
optimize the objective function of the model
problem through the application of the
decision variables presented in Section 3.3.
It is important to note that the number of
decision variables can be calculated to solve
the problem identified using N, + 2. This
means the number is determined based on
the number of raw materials used to
manufacture a product. Heidari et al. (2019)
introduced the HHO algorithm with two
main behaviors which include exploration
and exploitation as shown in Algorithm 1.
The exploration phase involves applying the
Harris Hawks behavior to detect rabbit prey
as expressed in Equation (20).

X(Iter) represents the current position
from Harris Hawks while X(Iter +1)
indicates its position in the next iteration.
The rabbit's position is denoted by
X,appit(Iter) while ry, 1y, 13, and 1, are all
random numbers in the range (0,1).
Moreover, the upper and lower limit
variables are denoted as UB and LB,
respectively. X, ,n,q(Iter) also simulates the
Harris Hawks selected randomly from the
current population while Equation (21) is
used to calculate the average position of the
current Harris Hawks population
(X (Iter)). X;(Iter) calculates the location
of each Harris Hawks in the current iteration
and N is the total number of hawks. It was
observed that the prey's energy (rabbit)
decreases during the transition from
exploration to exploitation as shown in
Equation (22). The notation shows that 2E,
represents the rabbit's initial energy and E
denotes the energy released by the prey
depending on the maximum number of
iterations (T').

It is pertinent to note that the Harris
Hawks is exploring and experiencing

_ (Xrana(ter)—ry|Xpqna(Iter)—2r,X(Iter)|
X(Iter +1) = { (Xrappit(Iter)—Xm(Iter))—rs3(LB+14,(UB-LB))

X, (Iter) = %Z’i\’zl X;(Iter)

exploitation when Ey>1. The four strategies
associated with Harris Hawks during the
exploitation phase include soft besiege, hard
besiege, soft besiege with progressive rapid
dives, and hard besiege with progressive
rapid dives. The soft besiege behavior
occurs when r = 0.5 and |E| = 0.5 as
indicated in Equations (23) and (24).
Moreover, the AX (Iter) shows the
difference between the position vector of
the rabbit and the current location in Iter
iteration with a value of ] = 2 (1 — 13)
while 7 describes the random numbers in
the range (0,1).

The hard besiege strategy occurs when
r = 0 and |E| < 0 as modeled in Equation
(25). The soft besiege with progressive rapid
dives occurs when r <0 and |E| >0 as
presented in Equations (26)-(29). It is
important to note that the levy flight
function is denoted as LF, a random vector
with size 1 x D is represented by S, and the
problem dimensions are described as D. The
LF function can be estimated using
Equation (28) where § is a constant of 1.5
while u and v are random values in the
range (0.1). Hard besiege with progressive
rapid dives occurs whenr < 0.5and |E| <
0.5 as modeled in Equation (30).
Meanwhile, Y' and Z' values can be
estimated using Equations (26) and (27).

5. STUDY DATA AND PROCEDURES

the
examples

used to conduct
include numerical
from three different cases involving
production problems that require
small (Case 1), moderate (Case 2), and large
numbers of raw material variations (Case 3).
It is important to state that Case 1 focuses
on the production problem requiring two
raw materials, Case 2 involves five raw

The data
experiments

materials, and Case 3 uses ten raw
materials.
q=0.5
q<0.5 (20)
(21)
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_ (XranaUter)=rq|Xrqna(lter)—2r, X(Iter)| q=0.5
X(Iter +1) = { (mebit(lte;)—Xm(lter))—r3(ZLB+7'4(UB—LB)) q<0.5 (20)
X, (Iter) = %Z?’lei(Iter) (21)
E =2E,(1-7) (22)
X(Iter + 1) = AX(Iter) — E|] Xrqppic(Iter) — X(Iter)| (23)
AX(Iter) = X, qppit(Iter) — X (Iter) (24)
X(Iter + 1) = X, qppic(Iter) — E|AX (Iter)| (25)
Y = Xrabbit(lter) - El]Xrabbit(Iter) — X(Iter)| (26)
Z=Y+SxLF(D) (27)
s 1
F(1+B)Xsin(n—) B
LFx=o.o1xﬂ,a=< 2_) 28
) |vl% (50 Bx2(h) 28
_(Yif F(Y) < F(X(Iter))
X(Iter +1) = {Z if F(Z) < F(X(Iter)) (29)
_(Y'if F(Y") < F(X(Iter))
X(Iter +1) = {Z’ if F(Z") < F(X(Iter)) (30)

Algorithm 1. Pseudo-code of HHO algorithm

Inputs: The population size N and the maximum number of iterations
Outputs: The location of the rabbit and its fitness value
Initialize the random population Xi(i = 1,2,...,N)
while (stopping condition is not met) do
Calculate the fitness values of hawks = X*
Set Xrabbit as the location of the rabbit (best location)
for (each hawk (Xi)) do
Update the initial energy EO and jump strength J (EO=2rand()-1, J=2(1-rand())
Update the E using Eq. (22) )
if (|E|= 1) then (phase of exploration)
Update the location using Eq. (20)
if (|E|] < 1) then (phase of exploitation)
if (r 20.5 and |E|2> 0.5) then (Soft besiege Update the location vector using
Eq. (23))
else if (r 20.5 and |E| < 0.5) then (Hard besiege Update the location vector
using Eq. (25))
else if (r <0.5 and |E|2 0.5) then (Soft besiege with progressive rapid dives
Update the location using Eq. (29)
else if (r <0.5 and |E| < 0.5) then (Hard besiege with progressive rapid
dives Update the location using Eq. (30)
Evaluate the rabbit position
Update rabbit position (X*) if there is a better solution for the population
t=t+1
Return Xrabbit

DOI: https://doi.org/10.17509/ijost.v8i2.54056
p- ISSN 2528-1410 e- ISSN 2527-8045



Utama et al. Sustainable Production-Inventory Model with Multi-Material... | 184

Data for case 1 are P=10,500, D=8,500,
N,=2, A= 4, A,=2, k,=0.1, £k,=0.15,
Clossl=2,000, ClOSSZ=1,OOO, Clossp=140,000,
Csa1=140,000, co,=12,000, co,=15,000, c;=
125, Ag,=125, A,,=100, ar,=100, ar,=100,
a,=700, dry=4, dr,=6, d,=10, KPLr;=20,
KPLr,=20, KPLr*,=18, KPLr*,=18,
KPL,=20, KPLp*=18, Br,=1,000, B,=1,000,
B,=1,000, p;=1.5, p,=1.2, pp=1.75, pp=5,
pPSm=50, pi,,=1.25, p0,=1, p0,=1.5, &=30,
61=25, =25, 6:,=25, G;,=25, G,=50,
§¢p=1500, Gpp= 70,000, Gyi=250, Gjr, =15,
Gir,=15, €5=550, €,=15, €;=1, €0,=0.015,
€0,=0.05, C.=1,444, K=1.645 =125,
§=45,000, Hy,=250, Hy,=155, H;=300.

Data for case 2 is presented as follows:
P=9,500, D=7,400, N,.=5, A1=2,
1,=0.1, 13=0.25, 1,=0.1, As=1,  k,=0.025,
k;=0.01, k3=0.01, k4=0, k5=0, Cjog5,=200,
Closs,=100,  C1p55,=200, Cios5,=0, Cips5,=0,
Closs,=80,000,  C5q1¢=75,000,  co,=8,000,
o,=1,300, ¢,=3,400, ¢(,=500, c( =500,
¢,=100, Ao =50, Ao,=50, Ag,=50, Ag,=50,
Ao =50, ary=20, ar,=20, arz=20, ary=5,
ars=10, a,=5, dr;=5, dr,=2, dr3=5, dr,=7,

drs=1, dp=5, KPLr;=20,
KPLr,=20, KPLr3=20, KPL1,=20, KPLrs=2,

KPLr*;=19, KPLr*,=19, KPLr*3=19,
KPLr*,=19, KPLr*5=19, KPL,=20,
KPLp*=18, Br,=1,000, Br,=1,000,
Br;=1,000, Br,=1,000, Br5=1,000,
B,=1,000, p;=0.5, p,=0.2, p3=0.02,
P4=0.001, p5=0.001, p,,=0.0015, p,,=5, pSpy,=
1,000, pi,,=1.25, p0,=0.5, p0,=0.5,
p05=0.5, p0,=0.2, p0s=1, &=30, ¢4=10,
62=10, 63=10, G4=5, ¢5=5, Gr,=10,
Gr,=10, gr3=10, Gr, =50, gr5=25, Sp=10,
Sep=1,000, Smp=500,000, Smi=100,

gir1=251gir2=25r gir3=251 gir4=125I gir5=100r
€5=1,000, €,=20, €;=1, €0,=0.5,
€0,=0.25, €05=0.52, €0,=25, €05=15,
C.=1,444, K=1.645, ¢=100, $=9,000,000,

Hy =150, H,,=175, H,y,=150, H,, =850,
Ho =750, H;=750.
Furthermore, data for case 3 are

P=9,500, D=7,400, N,=10, A,=2, 1,=0.1,

A3=0.25, A,=0.1, A5=1, A=2, 4,=0.1,
Ag=0.25, 19=0.1, A;9=1, k,=0.025, k,=0.01,
k3=0.01, k,=0, ks=0, k¢=0.025, k,=0.01,
kg=0.01, ko=0, k1(=0, Cjo55,=200, Cjos5,=100,
Closs;=200,  Cios5,=0,  Ciosss=0, Cios5,=200,
Closs, =100, C1p554=200, Cio55,=0, Cioss,,=0,
Closs,=150,000, (€441¢=120,000, co,=8,000,
c02=1,300, c03=3,400, co4=500, cos=500,
C0,=8,000, ¢(,=1,300, c(,=3,400, c,,=500,
Co,,=500, ¢1=100, Ay =50, A(,=50, Ay, =50,
Ap,=50, Ay =50, A, =50, Ag,=50, Ay, =50,
A09=50, A010=50, ar,=20, ar,=20, ar3=20,
ary=5, argz=10, arg,=20, ar,=20, arg=20,
arg=5, ary(p=10, ap=5, dry=5, dr,=2, dr3=5,
dr,=7, drs=1, drg=5, dr,=2, drg=5, dre=7,

dryo=1, dp=5, KPLr;=20, KPLr,=20,
KPLr;=20, KPL1,=20, KPLrs=20,
KPLrg=20, KPLr,=20, KPLrg=20,
KPLrg=20, KPLry (=20, KPLr*;=19,
KPLr*,=19, KPLr*3=19, KPLr*,=19,
KPLr*s=19, KPLr*4=19, KPLr*,=19,
KPLr*g=19, KPLr*4=19, KPLr*;y=19,
KPL,=20, KPLp*=18, Br,=1,000, B,,=1,000,
Br,=1,000, Br,=1,000, Brs=1,000,
Bre=1,000, Br,=1,000, Brg=1,000,
Bry=1,000, B,,=1,000, B,=1,000, p;=0.5,
p2=0.2, p3=0.02, p,=0.001, p5=0.001,
pe=0.5, p;=0.2, pg=0.02, py=0.001,

p10=0.001, p,=0.0015, p,,=5, psy,= 1,000,
pin=1.25, p0,=0.5, p0,=0.5, p03=0.5,
p0,4=0.2, p0s5=1, p04=0.5, p0,=0.5,
p0g=0.5, p04=0.2, p0,0=1, &=30, ¢;=10,
g2=101 §3=10; g4=50r (;5=25; (;6:10' (;7:10,
g8=1or (;9:50, (;10:25, (;r1=10, gr2=10'
gr3=10r gr4=50: §r5=25' §r6=10r §r7=10;
Grg=10, 6r4=50, Gr;,=25, 6p=10, ¢£,=1,000,
Smp=500,000, Gn;i=100, G;r,=25, G;r,=25,

gir3=25r gir4=125r gir5=1001 gir6=25'
gir7=251 gir8=251 gir9=125r Qir10=100,
€,=1,000, €,=20, €;=1, €0,=0.5, €0,=0.5,
€03=0.5, €0,=0.2, €05=1, €04=0.5,
€0-,=0.5, €0g=0.5, €04=0.2, €010=1,
C.=1,444, K=1.645, o= 100, $=9,000,000,
Hy,=150, H,,=175, H,,=150, H,, =850,
Hy =750, H, =150, H,, =175, Hg=150,

H09=850, H010=750, H1=750
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The optimization experimental
procedures conducted in this study with
HHO used different population variations
and iterations. Each case was optimized
using three population variations which
include the small, medium, and large
iterations. A total of 100 populations and
100 iterations (Pop 100 x Iter 100) were
used as small variations, 250 populations
and 250 iterations (Pop 250 x Iter 250) for
medium, as well as 500 populations and 500
iterations (Pop 500 x Iter 500) for large. Each
experiment was run 30 times, thereby
leading to 90 trials for each case and a total
of 270 trials for the three cases.

The quality of the solution provided by
the proposed algorithm was benchmarked
using ETP and computation time with the GA
and PSO algorithms. The parameters used to
compare the algorithms were large
populations and iterations which include
Pop 500 x Iter 500. In the GA algorithm, a
crossover probability of 0.8 and mutation of
0.8 was used while an inertia weight of 0.2
was applied in the PSO algorithm. It is
important to state that all the algorithms
were decoded on MATLAB R2018a on
Windows 10 AMD A8 with x64-64 4GB RAM.
Moreover, the ANOVA test was used to
determine the quality of the solution based
on ETP and the computation time to
compare the proposed algorithm with the
GA and PSO algorithms.

A sensitivity analysis was also conducted
to examine the effect of changing variables
on decision variables and the expectation of
total profit. It was applied to Case 1 using
the quality degradation rate (k), the
standard deviation of demand (o), and the
safety factor (K) as variables. Each variable
was changed with 10 different data and the
results were recorded.

6. RESULTS AND DISCUSSION

6.1. Expected Total Profit

Optimization Using HHO

(ETP)

The proposed model was developed
based on the complex real-world situation

which involves incorporating costs of fuel,
emissions, electricity, multi-materials,
quality degradation, and probabilistic
demand. It was applied to the
aforementioned three cases. The ETP
optimization using HHO based on trial
variations is summarized in Table 1.

The experimental results showed that the
experimental variations in Cases 1 and 2 are
small (Pop 100 x Iter 100), medium (Pop 250
x Iter 250), and large (Pop 500 x Iter 500),
and they all have the same solution. This
means the problems associated with a small
or medium number of raw materials
produced the same ETP without any
difference based on population variations
and iterations.

However, the problems associated with a
large number of raw materials in Case 3
showed that only the trials of medium
variations and large variations produced
similar and better ETP solutions compared
to the population variation experiment and
small iteration. This means the optimal
solution for Case 3 was found in the
population experiment as well as the
medium and large iterations.

6.2. Computation Time on Problem-Solving
with HHO

The results of the computation time
required to solve the problems using HHO
are presented in Table 2 based on variations
in trials and cases. It was discovered that an
increase in the population and iterations led
to an increment in the computation time
needed to solve the HHO algorithm
problems. The time was observed to reduce
for smaller populations and iterations. The
results from each case showed that the
problems associated with a larger quantity
of raw materials as indicated in Cases 1-3
necessitate an increase in computation
time.
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Table 2. Computation time to solve problems using HHO (Second).

Cases Results Pop 100 x Iter 100  Pop 250 x Iter 250  Pop 500 x Iter 500
Average 56 370 1,605
Case 1 Standard deviation 4.65 30.20 35.13
Minimum 46 273 1,557
Maximum 64 414 1,679
Average 120 777 3,141
Case 2 Standard deviation 6.25 26.14 104.81
Minimum 107 738 2,998
Maximum 129 821 3,305
Average 360 2,010 7,615
Case 3 Standard deviation 21 85.34 174.02
Minimum 324 1,869 7,183
Maximum 399 2,130 7,883
Table 3. Results of expected total profit optimization using HHO.
Cases Results Pop 100 x Iter 100 Pop 250 x Iter 250 Pop 500 x Iter 500
Average 164,137,878 164,137,878 164,137,878
Case 1 Standard deviation 0.00 0.00 0.00
Minimum 164,137,878 164,137,878 164,137,878
Maximum 164,137,878 164,137,878 164,137,878
Average 14,444,202 14,444,202 14,444,202
Case 2 Standard deviation 0.00 0.00 0.00
Minimum 14,444,202 14,444,202 14,444,202
Maximum 14,444,202 14,444,202 14,444,202
Average 76,290,250 76,387,543 76,387,543
Case 3 Standard deviation 167,177 0.00 0.00
Minimum 75,999,721 76,387,543 76,387,543
Maximum 76,387,543 76,387,543 76,387,543

Tables 2 and 3 showed that the problems
in Case 1 or 2 can be solved by varying
population trials and small iterations (Pop
100 x Iter 100). This is reasonable because
the small population and iteration
experiments produced solutions considered
to be as good as those classified as medium
and large. They also have faster
computation times than the other variations
and iterations.

Medium  population and iteration
variations were also recommended to solve
the problems in Case 3 because they
produced similar ETP solutions with large
variations and better than small variations.
However, large variations require more
computation time.

6.3. Algorithm Comparison

ETP and computation time for each
algorithm were compared and presented in
the Boxplot. The results for PSO and GA
algorithms are listed in Tables A7 and A8
respectively in Appendix A. Moreover,
Figures 6-8 show a Boxplot of the ETP
results for each algorithm in Cases 1-3. The
solution provided to Cases 1 and 2 by the
proposed HHO algorithm was observed to
be as good as the PSO algorithm. However,
the solution provided in Case 3 was found to
be better.

These findings were further supported by
the ANOVA test conducted on ETP as
shown in Tables 4 and 5 where the variance
of the ETP value was found to be different
(sig<0.05). It was discovered that HHO and
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PSO produced the same solution (sig>0.05)
in Cases 1 and 2 as indicated in Table 5.
However, HHO performed better than PSO
in Case 3 as evidenced by a sig value <0.05.
The ETP comparison results between HHO
and GA also showed that the proposed
model is superior in all cases.

Figures 9-11 show a Boxplot comparison
of Cases 1-3 in terms of computation time
and the PSO algorithm was observed to

have outperformed the proposed HHO and
GA algorithms. This was supported by the
findings of the ANOVA test in Tables 4 and 5
that the variance values of HHO, PSO, and
GA algorithms differ. The computation time
was discovered to be significantly different
as indicated by the sig value <0.05.
Meanwhile, the HHO algorithm produced a
better ETP than PSO despite having a
longer computation time.

= 164140000,0
= 164138000,0 =
= =
o &« 164136000,0 *
& o 1641340000 -
¢ 164132000,0
i 164130000,0
Algorithm
B HHO B Ga M psO
Figure 6. Boxplot of ETP results for each algorithm in Case 1.
™ 14444500,0
- 14444000,0 X
§ £ 14443500,0 .
® & 14443000,0 .
o 14442500,0
@ 14442000,0
Algorithm
B HHO B GA M P50
Figure 7. Boxplot of ETP results for each algorithm in Case 2.
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Figure 8. Boxplot of ETP results for each algorithm in Case 3.
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Table 4. The results of the ANOVA for the expected total profit (ETP) test and computation
time in each Case.

Tests Anova Case 1 Case 2 Case 3
Nilai F 4.823 5.703 24.551
ETP Sig 0.010 0.005 0.000
Nilai F 1325.044 1670.116 1276.111
Computation Time Sig 0.000 0.000 0.000

Table 5. The results of the comparison of expected total profit (ETP) and computation time
for each algorithm in each Case

Tests Comparing Sig Case 1 Sig Case 2 Sig Case 3
HHO-GA 0.023 0.012 0.000
ETP HHO-PSO 1.000 1.000 0.021
PSO-GA 0.023 0.012 0.000
HHO-GA 0.000 0.000 0.000
Computation Time HHO-PSO 0.000 0.000 0.000
PSO-GA 0.000 0.000 0.000
g 3000,000
= 2500,000
S T 2000,000 +
£ 8 1500,000 ——
S & 1000,000
3 500,000 ————
Axis Title

B HHO B Ga M PSO

Figure 9. Boxplot of computation time for each algorithm in Case 1.
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Figure 10. Boxplot of computation time for each algorithm in Case 2.
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Figure 11. Boxplot of computation time for each algorithm in Case 3.

6.4. Sensitivity Analysis

The results of the sensitivity analysis
conducted on the effect of changes in the
rate of quality degradation (k), the standard
deviation of demand (o), and the safety
factor (K) on the time of production cycle
(T) and ETP are explained. Figure 12
depicts the effect of k changes on T and
ETP and it was discovered that an increase
in the rate of quality degradation (k) led to
an increment in ETP and T, and vice versa.
Meanwhile, a change in the rate of decline
in quality (k) did not affect the decision
variables including the frequency of ordering
raw materials (m;) and delivery of finished
products (n) as indicated by the value of 1
for both. The results further showed that an
increase in the degradation rate (k) caused
an increment in the frequency of ordering
raw materials in one horizon. This s
reasonable because an increase in the rate
of quality degradation (k) is expected to
cause a reduction in the raw material
inventory j because of the increase in the
frequency with which raw materials are
ordered (m;) and vice versa.

Figure 13 shows the effects of changes in
the standard deviation of demand (o) on T
and ETP. The findings showed that an
increase in the standard deviation of
demand (o) led to an increment in ETP and
T, and vice versa. Meanwhile, the change in
demand standard deviation (o) has no effect

on the decision variables associated with
ordering raw materials (m;) and shipping
finished products (n).

The results also showed that a reduction
in the standard deviation of demand (o) led
to a decrease in demand uncertainty which
caused an ETP and T, and vice versa. This is
reasonable because demand uncertainty
usually increases with the standard
deviation of demand (o). A high uncertainty
can cause decision-makers to increase safety
stock and reduce T, thereby leading to high
inventory costs and lower ETP, and vice
versa.

It was discovered in Figure 14 that an
increase in the safety factor (K) also led to
an increment in ETP and T, and vice versa.
Meanwhile, the changes in the safety factor
(K) did not affect the frequency of ordering
raw materials (m;) and delivering finished
products (n).

The findings also indicated that an
increase in the safety factor (K) increased
the average finished product inventory,
thereby, leading to a reduction in finished
product lost sales (EL) and an enhancement
in ETP and T. Meanwhile, a decrease in
safety factor (K) caused a reduction in the
average finished product inventory and this
led to an increase in EL. As a result, ETP
and T fell. This is considered reasonable
because an increase in K enhances the risk
of EL and vice versa.
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6.5. Managerial Insight

The proposed model can be implemented
in companies with a linear decline in raw
material quality such as the agro, food, and
pharmaceutical industries. Its
implementation can assist managers and
decision-makers determine  production
decisions, raw material procurement, and
finished product delivery. Moreover, they
can also benefit significantly from the
findings related to ETP.

This study proposes the HHO procedure
for optimizing the problem of the
sustainable production inventory model.
The proposed algorithm outperforms the GA
and PSO algorithms. The findings suggested
that managers and decision-makers use a
population of 100 and iterations of 100 to
solve problems involving raw materials
numbers 2 (Case small) and 5 (Case
medium). To solve problems with ten raw
materials (Large Case), 250 populations and
250 iterations are recommended. The
proposed algorithm can increase the
company's ETP.

It was also indicated that the degradation
of raw materials quality affects the
company's ETP. This is observed from the
fact that low-quality degradation can
improve ETP. Therefore, managers and
decision-makers are required to consider
several factors such as  humidity,
temperature, and storage time. It has been
indicated that perishable raw materials are
extremely  sensitive to changes in
temperature and humidity (Mahmood et al.,
2019). This means proper management
needs to be implemented in the storage
areas to slow the decline in quality (k).
There is also the need for strict and effective
inventory management procedures such as
the principle of a First-In First-Out (FIFO)
inventory system. This method is useful in
dealing with quality degradation issues
caused by first processing first-come, first-
served raw materials. It also has the
potential to reduce warehouse storage time.

The study also showed that an increase in
the standard deviation of demand (o)
reduced ETP. This means managers and
decision-makers need to effectively manage
demand at the sales level through
Collaborative Planning, Forecasting, and
Replenishment (CPFR). CPFR is a method of
demand planning and fulfillment that
improves the efficiency of manufacturing
and supply chain businesses (Danese, 2006)
(Panahifar et al., 2015). It also can assist
producers to obtain reliable demand data
(Alptekin et al., 2017).

An increase in the safety factor (K) was
also observed to have the ability to raise
ETP. Therefore, managers and decision-
makers need to decide whether to use a
high safety factor (K) when demand is
uncertain to enhance the average inventory,
but this can reduce the risk of EL and ETP.

7. CONCLUSION

This study proposed a sustainable
production inventory model to maximize
ETP with due consideration for fuel cost,

emissions cost, electricity cost, multi-
materials,  quality = degradation, and
probabilistic demand which represent

complex real-life cases. This is to ensure the
limitations of previous models are resolved
in the proposed model. Moreover, a new
HHO procedure was also proposed to
optimize the problems associated with the
sustainable production inventory model.
The findings showed that the proposed HHO
algorithm was able to optimize the
sustainable production inventory model
problem. It also outperformed the GA and
PSO algorithms in ETP but has a slower
computation time than PSO.

The sensitivity analysis conducted also
presented significant results such as the
reduction in ETP and time of production
cycle (T) due to the increase in the quality
degradation rate. A similar trend was also
recorded with the standard deviation of
demand (o) while an increase in the safety
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factor (K) was observed to have led to an
incrementin ETP and T.

The proposed study model has limitations
that can be addressed in future
investigations. These include the
consideration of certain factors such as
defective item  production in the
development of a new model in the future.
The model also assumed the manufacturing
process to be flawless with no product

defects. Therefore, further studies can be
developed by considering the presence of
defective items. There is also the need to
account for the uncertainty of delivery lead
time because the model designed in this
study only considered demand even though
the uncertainty for delivery lead time is
more common in reality. It is recommended
that the model is developed with due
consideration for the uncertainty of the

defects. In reality, errors in the deliverylead time in future studies.

manufacturing process can result in product
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