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1. Introduction

The Particle swarm Optimization (PSO) [1] is a population-based, self adaptive search
optimization method motivated by the observation of simplified animal social behavior. It is
becoming very popular due to its simplicity of implementation and ability to quickly converge to
reasonably good solution [2]-[4]. Especially, global search capability of the method is very
powerful. The particle swam optimization utilizes common knowledge of the group and individual
experience effectively. That is, direction for the best estimator that a particle has ever reached,
direction for the best one that all particle have ever found and momentum are successfully combined
to determine the next iteration. Unfortunately, PSO show some weakness in term of balance between
exploitation and exploration during the search [5]. For example in multi-objective problems, the
search is not concentrated on the visited areas effectively, and often it shows a premature
convergence and lack of diversification during moving from position to another. In order to solve
this problem, various techniques have been proposed can be found in the literature [6], [7]. In most
of the introduced techniques, extensive and intensive search are controlled by using the parameters
setting. However this has an influence on the search for new solutions in case of multi-objective
problems [7]. There is a popular technique which is used for evolutionary approaches, it is based on
starting the search by an intensive search and then gradually explore other locations until all the
search space is covered [8], [9]. However, such techniques make solving of multi-objective
problems complicated especially in some situations where the search space contains many local
optima.

The particle swam optimization itself does not have a capability searching the neighbor of the
position and it may miss the optimal point near the present position because the method does not use
local information of the function. Even if a particle is close to a global optimal, the particle moves
based on the three factors described above. As a result, efficiency of the particle swam optimization
may be limited in some cases. It seems better to search neighbor area carefully. To do so, local
information such as gradient is necessary. On other hand, The descent direction search local area
[10][11], [12] based on the gradient of the function. If the local search capability of the descent
direction can be added to global search one of the particle swam optimization, we have a useful
optimization method with global search capability and efficient local search ability at the same time.
Therefore, combination of the particle swam optimization and the descent direction method is
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promising and interesting approach. However, The descent direction method requires the gradient
that is the first derivative of the function. In many application, it is difficult or impossible to obtain
the gradient exactly of an objective function. In order to overcome the drawback, the Automatic
Differentiation [13] is introduced. It is upcoming technology which provides software for automatic
computation of derivatives of a general function provided by the user. Automatic Differentiation is
also called computation differentiation or algorithmic differentiation [13], [14]. The idea is that basic
derivative rules from calculus, such as the chain rule, can be implemented in a numerical
environment.

II. Related Works

A. Descent Direction

The optimization problem is to find a optimum point of an objective function f(x) € R™ with
an adjustable n dimension parameter vector X € R™. The steepest descent method (also called
Cauchy’s method or gradient method) is one of the oldest and simplest procedures for minimization
of a real function defined on R™ [10][11], [12], [15]. It is also the departure point for many other
more sophisticated optimization procedures. The iteration is given as in (1).

x(t+ 1) =x() +a(t)d(t), t=0,1,.. €))

where d(t) is a descent direction a(t) is a scalar of step length. The gradient vector of a
function points towards the direction in which locally the function is increasing the most rapidly. A
natural choice for the descent direction is to use the negative gradient direction. The function is
changing most rapidly in this direction, it is known as the steepest descent direction [10], the
direction is defined as in (2).

d(t) = =Vf(x(®) 2

B. Particle Swam Optimization

Particle Swarm Optimization (PSO) [1] is a population-based, self adaptation search optimization
method motivated by the observation of simplified animal behaviors. PSO searches for optimal
solution via collaborating with individuals within a swarm of population. Each individual, called
Particle or Agent is made of two parts, the position and velocity. For an n_dimensional problem and
a swarm of m particles, the ith particle's position and velocity, in general, are denoted as
x;[%i1, Xz, oo Xin]T and V; = [Vig, Vig, oo, Vin]T for i = 1,2, ..., m, respectively. Consider on the
inertia weight PSO, the algorithm of the particle swarm optimization is described as in (3).

where
Vit + 1) = 2 (@Vi(0) + 61 (p(O) — x:(0) + ¢ (9(0) — x:(0))) 4)

The parameter vector X;(t) denote an estimator of the optimum point at the tt" iteration.
V;(t) is called a velocity vector, that is, a modifying vector for the parameter vector (momentum for
the next iteration). p(t) is the best estimator that this particle has ever reached. g(t) is the best one
that all the particles have ever found until the t*" iteration. p(t) and g(t) are called personal best

and global best, respectively. The coefficient ¢p; and ¢, are two positive random number in a
certain range using uniform distribution with upper limitation to decide a balance between the

individual best estimator and the swarm best one. w denotes a coefficient to adjust the effect of the

inertia and * is a gain coefficient for the update.
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III. Basic of Automatic differentiation

Automatic differentiation (AD) [13] is a set of techniques for transforming a program that
calculates numerical values of a function, into a program which calculates numerical values for
derivatives of that function with about the same accuracy and efficiency as the function values
themselves [14]. The basic process of AD is to take the text of a program (called the underlying
program) which calculates a numerical value, and to transform it into the text of program (called the
transformed program) which calculates the desired derivative values. The transformed program
carries out these derivative calculations by repeated use of the chain rule from elementary calculus,
but applied to floating point numerical values rather than to symbolic expressions [14]. AD is a
chain-rule-based technique for evaluating the derivatives with respect to the input variables of
functions defined by a high-level language computer program. AD has two basic modes of
operations, the forward mode and the reverse mode. Suppose that f as in [14] is an underlying
program which takes n independent variables X; as inputs, and produce m dependent variables y; as
outputs, and the Jacobean | = f = dy;/ dx; given particular values for x;, want to be obtained.
The forward mode associates with each floating point program variable v a vector ¥ of floating
point derivatives value. Conceptually, the case is when each dot vector ¥ contains one component
for each independent variable x; and component i contains the corresponding derivatives dv/dx;,
so that ¥ = V,.v. The reverse mode associates with each floating point program variable v a vector
v of floating point derivatives values. Conceptually, the case is when each of these bar vector
contains one component for each dependent variable, and component i contains the corresponding
derivative dy;/0v, so that ¥ = D, y[14].

IV. Proposed approach

Global optimal can be obtained using the particle swarm optimization. However, since the
particle swarm optimization itself does not have a capability searching the neighbor of the position
and it may miss the optimal point near the present position. Thus, efficiency of the particle swarm
optimization may be limited in some cases. The Steepest descent direction method search only local
area rapidly. If the local method of steepest descent direction can be added to the global search of
the particle swarm optimization, a useful optimization method with good global search capability
and efficient local search ability at the same time will be gotten. In this paper, we propose some
schemes of combinations the particle swarm optimization with the steepest descent direction by
automatic differentiation consider to the minimization problem.

A. Case 1

The particle swarm optimization with the the steepest descent direction is combined directly that
is the velocity (momentum) of PSO use the steepest descent direction term. The steepest descent
direction is used to change the direction of modification. The equation is defined as in (5).

Vit +1) = x (~a VF(2(0) + $1(0(®) — xi0)) + $2(9(®) = x1(0))) (5)

In this scheme, all individuals have the same characteristics since the gradient is applied for all
particles.

B. Case 2

If the best particle is close to the global minimum, and this is likely, the best particle had better
search neighbor of the present point carefully. Then, modification based on the original particle
swarm optimization is not suitable for this particle. The gradient type of method is suitable.
Therefore, The steepest descent direction are applied only to the best particle. All the other
individuals are updated by the ordinary particle swarm optimization.

C. Case 3

The particle swarm optimization and the steepest descent direction are mixed. That is, in every
iteration, half of individuals in the population are updated by the particle swarm optimization, left
half particles are modified only by the steepest descent direction. All the individuals select the
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particle swarm optimization or the steepest descent direction randomly with probability of 0.5 in
every iteration.

D. Case 4

Basically, we use the scheme 3. However, the best individual is updated only by the steepest
descent direction since the best particle has a good chance to be a neighbor of a global minimum.

V. Comparison
In order to evaluate performance of these algorithms, The benchmark functions are used. These
functions have their inherent characteristics about local minimum or slope. The algorithm are
implemented in MATLAB version 7.6.0.324 (R2008a). They are executed sequentially on a
processor Intel Core 2 Duo CPUs. The total main memory is 1G and the operating system is
Windows XP Professional SP3.Comparisons are carried out for ten-dimensional case, that is, n =
10 for all test functions. 30 particles are included in the population. Change of average means that
an average of the best particle in 30 particles at the iteration for 20 trials are shown.

Table 1. The parameter setting for experimental of bencmarks function

P1 P2 X w a off all case
2 1 1 0.9 0.00003

A. Rastrigin function
The Rastrigin function is described as in (6).

f(x)=10n+ ¥, x? — 10 cos 2m x; (6)

Fig. 1 is the shape of this function for 2 demission case. As shown in the figure 1, this function
contains many local minimum points. It is generally difficult to find a global minimum using the
gradient type of the method. It is difficult also for the particle swarm optimization to cope with the
function. The value of the global minimum of the function is 0. Using the setting are given in the
Table 1. we compare these four methods and the ordinary particle swarm optimization. The results
of the change of the best particle for Rastrigin function are given in Fig. 2. Fig. 2 shows that the
scheme 1 and 3 have better performance.
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Fig. 1. Rastrigin function
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Fig. 2. Change of the best particle for rastrigin function

B. Rosenbrock's valley function

The Rosenbrock's valley is a classic optimization problem,also known as banana function. The
function is defined in (7).

f(x) =¥ 100(x01 — x2)2 + (1 — x;)? 7

Fig. 3 is the shape of this function for 2 demission case. Using the setting are given in the Table
1, we can see that scheme 2, 3 and 4 match for this function as in Fig. 4.

Fig. 3. Rosenbrock's valley function
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Fig. 4. Change of the best particle for Rosenbrock's valley function

C. 2™ minima function

The 2™ minima function is described as in (8).
fx) = XLy« — 16x7 + 5x; ®)

Fig. 5 is the shape of this function for 2 demission case. The function has some local minimum
points and relatively flat bottom. The value of the global minimum of the function is -783.32. Using
the setting are given in the Table 1, The comparison results for 2™ minima function are given in Fig.
6. It seems that scheme 3 and 4 have good performance for this function.
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Fig. 5. 2™ minima function
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Fig. 6. Change of the best particle for 2™ minima function function

VI. Conclusion

In this paper, we have proposed an combination of particle swarm optimization method and

gradient methods to solve global optimization problem. The both methods are combined directly in
forth's schemes. Further, we compare our methods on benchmark function. The results shown that
the combination methods give us a powerful tool to find the solution.
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